Subject 24-242. Logic II. Answers to the Seventh Homework

1. Take a sentence α so that α is provably equivalent to $(Bew_{PA}([\ \alpha\]) \lor Bew_{PA}([\ \alpha\]))$. Is α decidable in PA? Is it true?

PA $|-(Bew_{PA}([\alpha]) \rightarrow \alpha))$, and so, by Löb's Theorem, α is true and provable.

2. Show that, for each *n*, one can find an arithmetical formula τ_n such that, for each sentence ϕ , PA $\left| -([{}^{r}\phi^{\gamma}] < [n] \rightarrow (\tau_n([{}^{r}\phi^{\gamma}]) \leftrightarrow \phi)) \right|$.

Let's say the sentences less that *n* are $\phi_1, \phi_2, \dots, \phi_m$. We can take $\tau_n(x)$ to be the formula $((x = \lceil r \phi_1 \rceil \land \phi_1) \lor (x = \lceil r \phi_2 \rceil \land \phi_2) \lor \dots \lor (x = \lceil r \phi_m \rceil \land \phi_m)).$