Subject 24-242. Logic II. Answers to the Seventh Homework

1. Take a sentence α so that α is provably equivalent to $\left(\operatorname{Bew}_{\mathrm{PA}}\left(\left[{ }^{[} \alpha^{\top}\right]\right) \vee B e w_{\mathrm{PA}}\left(\left[{ }^{[\sim} \sim \alpha^{\top}\right]\right)\right)$. Is α decidable in PA? Is it true?

PA $\mid\left(B e w_{P A}([\ulcorner\alpha]]) \rightarrow \alpha\right)$, and so, by Löb's Theorem, α is true and provable.
2. Show that, for each n, one can find an arithmetical formula τ_{n} such that, for each sentence ϕ, PA $F\left(\left[\left\ulcorner\phi^{\top}\right]<[n] \rightarrow\left(\tau_{n}([\ulcorner\phi]) \leftrightarrow \phi)\right)\right.\right.$.

Let's say the sentences less that n are $\phi_{1}, \phi_{2}, \ldots, \phi_{m}$. We can take $\tau_{n}(x)$ to be the formula $\left(\left(x=\left[\left\ulcorner\phi_{1}\right\urcorner\right] \wedge \phi_{1}\right) \vee\left(x=\left[\left\ulcorner\phi_{2}\right\urcorner \wedge \phi_{2}\right) \vee \ldots \vee\left(x=\left[\left\ulcorner\phi_{m}\right\urcorner\right] \wedge \phi_{m}\right)\right)\right.$.

