Subject 24.242. Logic II. HW3 Sample Answers
For each term τ, we have defined a code number $\ulcorner\tau\urcorner$, according to the following prescription:

$$
\begin{aligned}
& { }^{10}=\operatorname{Pair}(1,1) . \\
& { }^{\prime} x_{i}{ }^{7}=\operatorname{Pair}(2, i) . \\
& \ulcorner\boldsymbol{s} \tau\rceil=\operatorname{Pair}(4,\ulcorner\tau\urcorner) \\
& \left\ulcorner\left(\tau+\rho^{\top}\right)=\operatorname{Pair}(5, \operatorname{Pair}(\ulcorner\tau\urcorner,\ulcorner\rho\urcorner))\right. \text {. } \\
& \tau(\tau \cdot \rho\rceil)=\operatorname{Pair}(6, \operatorname{Pair}(\ulcorner\tau\urcorner, \Gamma \rho\urcorner)) \text {. } \\
& \quad(\tau E \rho\urcorner)=\operatorname{Pair}(7, \operatorname{Pair}(\ulcorner\tau\urcorner,\lceil\rho\urcorner)) \text {. }
\end{aligned}
$$

$\operatorname{Pair}(x, y)$ is, you will recall, $1 / 2(x+y)(x+y+1)+x$.

1. Give the Arabic numeral for $\ulcorner(0+0)$.

2. Show that a set of natural numbers is decidable if and only if it is either finite or the range of an increasing calculable total function. (A total function f is increasing iff, for any x and y, if $x<y$, then $f(x)<f(y)$.)
(\Rightarrow) If S is infinite, it is the range of the following increasing total function:
$f(0)=$ the least element of S.
$f(n+1)=$ the least element of S greater than $f(n)$.
If S is decidable, f can be calculated by testing the natural numbers, one after another, for membership in S.
(\curvearrowleft) A finite set is obviously decidable, just by incorporating a list of the set into the program. If S is the range of an increasing, calculable total function f, we can test whether n is an element of S by calculating $f(0), f(1), f(2)$, and so on, until we reach an i with $f(i) \geq n$. If $f(i)=n$, then n is in S. If $f(i)>n$, then $n \notin S$.
