Subject 24.242. Logic II. Answers to the last homework assignmetn
Recall that a normal modal system for the modal sentential calculus is a set of formulas Γ that meets the following conditions:
(TC) Every tautological consequence of Γ is in Γ.
(Nec) If ϕ is in Γ, so in $\square \phi$.
(K) All instances of the schema $(\square(\phi \rightarrow \psi) \rightarrow(\square \phi \rightarrow \square \psi))$ are in Γ.

1. A binary relation R on a set W is symmetric iff, for every v and w in W, if $R w v$ then $R v w$. Let KB be the smallest normal modal system that contains all instances of the schema
(B) $\quad(\diamond \square \phi \rightarrow \phi)$

Show that a sentence is in KB if and only if it's valid for the class of frames $\langle W, R, I\rangle$, with R symmetric.

First, we show that (B) is valid for the class of symmetric frames. Suppose that R is symmetric and that $\diamond \square \phi$ is true at the world w in the frame $\langle W, R, I\rangle$. Then there is a world v accessible from w in which $\square \phi$ is true. So ϕ is true in every world accessible from v. In particular, ϕ is true in w, since, by symmetry, w is accessible from v. So $(\diamond \square \phi \rightarrow \phi)$ is valid in <W,R,I>.

Let Γ be the set of sentences valid for the class of symmetric frames. Γ is a normal modal system that includes (B), and so Γ includes KB. We need to show that, if a sentence ϕ isn't in KB, it isn't in Γ. That is, we need to show that, if ϕ isn't in KB, then there is a symmetric frame in which there is a world in which ϕ is false. We know that the canonical frame for KB contains a world in which ϕ is false; so it will be enough to show that the canonical frame for $K B$ is symmetric.

Suppose that w and v are worlds in the canonical frame for $K B$ and that Rwv. We need to see that Rvw, that is, we need to see that, whenever $\square \Psi$ is in v, Ψ is in w. Since $\square \Psi$ is true in $\mathrm{v}, \diamond \square \Psi$ is true in every world that has access to v ; in particular, $\diamond \square \Psi$ is true in \mathbf{w}. Since $(\diamond \square \Psi \rightarrow \Psi$) is true in w, it follows that ψ is true in w, and so $\Psi \in \mathbf{w}$.
5. Prove de Jongh's theorem that all instances of schema
(4) $\quad(\square \phi \rightarrow \square \square \phi)$
are elements of the smallest normal modal system that includes all instances of the schema:
(L) $\quad(\square \mathbf{(} \square \phi \rightarrow \phi) \rightarrow \square \phi)$.
[Hint: The instance of schema (L) that you'll use is $(\square(\square(\phi \wedge \square \phi) \rightarrow(\phi \wedge \square \phi)) \rightarrow \square(\phi \wedge$ $\square \phi)$).]

1. $\quad((\phi \wedge \square \phi) \rightarrow \phi)$
2. $\square((\phi \wedge \square \phi) \rightarrow \phi)$
3. $\quad(\square((\phi \wedge \square \phi) \rightarrow \phi) \rightarrow(\square(\phi \wedge \square \phi) \rightarrow \square \phi)) \quad$ (K)
4. $\quad(\square(\phi \wedge \square \phi) \rightarrow \square \phi)$
5. $\quad(\phi \rightarrow(\square(\phi \wedge \square \phi) \rightarrow(\phi \wedge \square \phi)))$
6. $\square(\phi \rightarrow(\square(\phi \wedge \square \phi) \rightarrow(\phi \wedge \square \phi)))$
(TC)
(Nec), 1
(TC), 2, 3
(TC), 4
(Nec), 5
7. $\quad(\square(\phi \rightarrow(\square(\phi \wedge \square \phi) \rightarrow(\phi \wedge \square \phi))) \rightarrow(\square \phi \rightarrow \square(\square(\phi \wedge \square \phi) \rightarrow(\phi \wedge \square \phi))))(\mathbf{K})$
8. $\quad(\square \phi \rightarrow \square(\square(\phi \wedge \square \phi) \rightarrow(\phi \wedge \square \phi)))$(TC), 6, 7
9. $\quad(\square(\square(\phi \wedge \square \phi) \rightarrow(\phi \wedge \square \phi)) \rightarrow \square(\phi \wedge \square \phi))$ (L)
10. $\quad(\square \phi \rightarrow \square(\phi \wedge \square \phi))$ (TC), 8, 9
11. $\quad((\phi \wedge \square \phi) \rightarrow \square \phi)$
12. $\square((\phi \wedge \square \phi) \rightarrow \square \phi)$(TC)
13. $\quad(\square(\phi \wedge \square \phi) \rightarrow \square \phi)$ (K)(Nec), 11
14. $(\square(\phi \wedge \square \phi) \rightarrow \square \square \phi)$ (TC), 12, 13
15. $\quad \square \phi \rightarrow \square \square \phi)$ (TC), 10, 14
