
Godel Numbering 

{x: x is a horse) is a collection that has all the worlds horses as elements, and nothing 

else. Thus we have 

For any y, y E {x: x is a horse) if and only if y is a horse. 

Traveler, for example, is a horse, so Traveler E {x: x is a horse). We would expect this pattern to 

hold generally, so that we have: 

For any y, y E {x: x is ) if and only if y is , 

for any way of filling in the blank. 

That's what we'd expect. But now try filling in the blank with "not an element of itself '; 

we get: 

For any y, y E {x: x is not an element of itself) if and only if y is not an 

element of itself. 

Substitute "{x: x is not an element of itself)" for "y," and we get a contradiction: 

{x: x is not an element of itself) E {x: x is not an element of itself) if and 

only if {x: x is not an element of itself) is not an element of itself. 

This is Russell's paradox, one of several set-theoretic paradoxes that shook the 

foundations of mathematics around the beginning of the twentieth century. The reason these 

paradoxes were so disturbing is that, during the last few decades of the nineteenth century, the 

idea of a set had played an increasing role in clarifling and securing the foundations of 

mathematics, particularly the calculus. By making set theory insecure, the paradoxes threatened 

to undo all these gains. 

A strategy for responding to the paradoxes is to adopt, hopefully on a principled basis, 

axioms that restrict the way the blanks can be filled in enough to prevent contradictions but not 

so much as to prevent set theory from playing its useful mathematical roles. That's a good 

questions, but how do we know that our axioms still don't still produce contradictions? The 

axioms are chosen to block the path by which Russell obtained a contradiction, but how can we 

be sure we won't still arrive at a contradiction by some, more devious path? 
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David Hilbert proposed an innovative solution to this problem. Ordinarily, 

mathematicians study things like points, lines, planes, functions, and numbers, and they use 

mathematical proofs as a means of learning about these things. Hilbert proposed to treat 

mathematical proofs as themselves the objects of mathematical investigation. A new branch of 

mathematics, metamathematics, would study proofs the way geometers study points, lines, and 

planes. The hope would be that an investigation of proofs would enable us to prove that the 

axioms of set theory wouldn't lead to a contradiction. Graph theorists investigate when it is 

possible to find a path fiom one location to another within a complex network of points 

connected by curves. Proof theorists do something similar, looking to see whether there is a path 

leading from the axioms to a contradiction. Russell's paradox has taught us to be wary of proofs 

in set theory. Hilbert thinks we needn't be similarly chary of the proofs produced by proof 

theorists. The difference is that sets are fiequently infinite, and so impossible to display 

concretely or survey fully. Proofs, on the other hand, are finite objects that we can actually write 

out on paper. 

Metamathematics, as Hilbert envisaged, is separate from the rest of mathematics, because 

it studies a different kind of thing fiom the things ordinary mathematicians study. Godel devised 

a method of assimilating proof theory into ordinary mathematics by assigning arithmetical codes 

to the different symbols, thereby turning the question whether a particular sentence is provable 

from a certain set of axioms into an arithmetical question. 

The details of the coding are fairly arbitrary. What we'll see here is one possibility 

among many. We'll begin by encoding terms by ordered pairs and ordered triples. For any x, y, 

and z, Triple(x,y,z) = Pair(x,Pair(y,z)). If w = Triple(x,y,z),then lstin3(w) = x, 2ndin3(w) = y, 

and 3rdin3(w) = z. 

The code for "0" is the pair Pair(1 ,O), which we abbreviate Ql. 

The code for "%" is the pair Pair(2,n), which we abbreviate r q l .  

The code for ST is the pair Pair(4,91), which we abbreviate r s ~ l .  
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The code for ( ~ + p )  is the triple Triple(5, 91, rpl), which we abbreviate r ( ~  + p)l. 

The code for (TOP) is the triple Triple(6,91, rpl), which we abbreviate r ( ~  l p)l. 

The code for (T E p) is the triple Triple(7,91, rpl), which we abbreviate r ( ~  E p)l. 

A number is the code of a term if and only if it is an element of every set S of numbers 

that meets the following conditions: 

Pair(1,l) ES. 

Pair(2,i) E S. 

If x is in S, so is Pair(4,x). 

If x and y are in S, so are Triple(S,x,y), Triple(6,x,y), and Triple(7,x,y). 

Any set that meets these conditions will be infinite, and we can't talk about infinite sets within 

the language of arithmetic. If we want to talk about the set of codes within the language of 

arithmetic, we need to figure out ways to say the things we want to say using only finite sets, so 

that we can take advantage of the fact that finite sets have numerical codes. Such an effort yields 

the following theorem: 

Theorem. The set of codes of terms is a A set. 

Proof. The set of codes of terms in 2. x is the code of a term if and only if it's an element of a 

finite set s with the following properties: 

If Pair(4,y) E s, y E s. 

If Triple(S,y,z) E s, then y E s and z E s. 

If Triple(6,y,z) E s, then y E s and z E s. 

If Triple(7,y,z) E s, then y E s and z E s. 

If y E s, then either y = Pair(1,O) or ( I n  < y)y = Pair(2,n) or 

( I n  < y)y = Pair(4,n) or (3m < s)(3 n < s)y = Triple(S,m,n) or 

(3m < s)(3 n < s)y = Triple(6,m,n) or (3m < s)(3 n < s)y = Triple(7,m,n). 

The properties the code number of s has to satisfy for these conditions to be met can be 

expressed by a bounded formula. 
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The complement of the set of codes of terms is x. It will be helpful to have the following 

definition on board: 

Definition. x ;-y = x - y if x 2 y; 

=Oifx<y.  

Note that x ;-y = z iff ((z + y) = x V (x < y A z = 0)); since this is a bounded formula, ;-is a A 

total function. 

If x isn't the code of a closed term, then, if we try to form the structure tree for x, there 

will a branch that doesn't terminate either in "0" or a variable. Thus, x is not a code of a term if 

and only if there is a finite sequence s with the following properties: 

( s ) ~  = X. 

If n < length(s) and (s), = Pair(4,y), then n+l < length(s) and (s),, = y. 

If n < length(s) and (s), = Triple(S,y,z), then n+l < length(s) and (s),, is equal to 

either y or z. 

If n < length(s) and (s), = Triple(6,y,z), then n+l < length(s) and (s),, is equal to 

either y or z. 

If n < length(s) and (s), = Triple(7,y,z), then n+l < length(s) and (s),, is equal to 

either y or z. 

If n+l < length(s), then either (s), = Pair(4,(s),,) or (32 < s)(s), is equal to 

either Triple(S,(s),,,z) or Triple(S,z,(s),,) or Triple(6,(s),,,z) or Triple(6,z,(s),,) 

or Triple(7,(s),+,,z) or Triple(7,z,(s),,). 

(s)lenpth(s) T 1 + Pair(1,O). 

-(In < S)(S)~,,~~(~) = Pair(2,n). IXI 

The set of codes of closed formulas is A; just leave off the clause for variables. 

Theorem. The set of pairs <x,y> for which y is a term and x a subterm of y is A. 
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Proof: Where I say "y is a term and x is a subterm," what I really mean is that y is the code of a 

term and x the code of a subterm. Most of the time, I'll neglect this distinction. You'll get used 

to it. 

If y is a term, x is a subterm of y if and only if x is an element of every finite set that 

meets the following conditions: 

y is in the set. 

If Pair(4,z) is in the set, z is in the set. 

If Triple(S,z,w), Triple(6,z,w), or Triple(7,zkw) is in the set, z and w are in the 

set. 

This shows that the set of pairs <x,y> with y a term and x a subterm is n. To see that it's also x, 
note that, for y a term. x is a subtern of y if and only if there is a number s coding a finite set with 

with the following properties: 

y is in the set. 

If Pair(4,z) is in s, z is in the set. 

If Triple(S,z,w), Triple(6,z,w), or Triple(7,zkw) is in tbe set, z and w are in the 

set. 

If t < s is the code of a set containing y with the properties that z is in the set 

coded by t whenever Pair(4,z) is in the set coded by t and that z and w are in the 

set coded by t whenever any of Triple(S,z,w), Triple(6,z,w), or Triple(7,z,w) in in 

the set coded by z, then x is an element of the set coded by t.M 

AJinite tree is a finite set of sequences with the property that any initial segment of a 

member of the set is a member of the set; the statement that s is the code of a fine tree can be 

formalized by a bounded formula. AJinite binary tree is a finite tree consisting entirely of 

sequences of 0s and 1s. Where x is a code of a term, a structure tree for x is a pair Pair(s,f), 

where s is a code of a finite binary true and f is a function with domain the set of elements of the 

set coded by s that satisfies the following properties: 
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f assigns x to the trunk of the tree, < >. 

If y E s and f(y) = Pair(4,z), then y A <O> E s and f(y A <0>) = z, and y A <1> C s. 

If y E s and f(y) = Triple(S,z,w), then y A <0> and y A <1> are both in s, and 

f(y A <0>) = z and f(y A <I>) = w. 

If y E s and f(y) = Triple(G,z,w), then y A <0> and y A <1> are both in s, and 

f(y A <0>) = z and f(y A <I>) = w. 

If y E s and f(y) = Triple(7,z,w), then y A <0> and y A <1> are both in s, and 

f(y A <0>) = z and f(y A <I>) = w. 

If y A <O> E s and f(y A <0>) = z, then either f(y) = Pair(4,z) or 

(3w < s)(f(y A <I>) is defined and equal to w and f(y) = Triple(S,z,w)) or 

(3w < s)(f(y A <I>) is defined and equal to w and f(y) = Triple(6,z,w)) or 

(3w < s)(f(y A <I>) is defined and equal to w and f(y) = Triple(7,z,w)). 

If y A <1> E s and f(y A <I>) = w, then, for some z < s, f(y A <O> is defined and 

equal to z and either f(y) = Triple(S,z,w) or f(y) = Triple(6,z,w) or f(y) = 

Triple(7,z,w). 

If y E s and neither y A <0> nor y A <1> is in s, then either f(y) = Pair(1,O) or 

(3n < s)f(y) = Pair(2,n). 

Unique Readability Lemma. Every (code of a) term has a unique structure tree. 

The most straightforward way to prove this would be to show that the set of terms for 

which there is a unique structure tree contains Pair(1,l) and Pair(2,i), for each i, and that it 

contains Pair(4,y), Triple(S,y,z), Triple(6,y,z), and Triple(7,y,z) whenever it contains y and z. 

Such a proof talks about infinite set of numbers, so it can't be carried out within the language of 

arithmetic. To get a purely aritmetical version of the proof, we have to pick a particular number 

y that codes a term and show that every subterm of y has a unique structure tree, formulating the 

argument in such a way that it only talks about subterms ofl. I won't go through the details. 

Theorem. The function Den that takes a closed term to the number it denotes is A. 



Godel Numbering, p. 7 

Proof: Den(x) = v iff there is a finite set s with the following properties: 

Pair(x,v) E s. 

If y E s, lst(y) is a closed term. 

If Pair(Pair(1 , 1,), u) is in s, then y = 0. 

If Pair(Pair(4,y),u) is in s, then u > 0 and Pair(y,u 7 1) is in s. 

If Pair(Triple(S,y,z),u) is in s, there there are t and w with Pair(y,t) and Pair(z,w) in 

andwithu=t+w. 

If Pair(Triple(6,y,z),u) is in s, there there are t and w with Pair(y,t) and Pair(z,w) in 

andwi thu=t*w.  

If Pair(Triple(7,y,z),u) is in s, there there are t and w with Pair(y,t) and Pair(z,w) in 

S 

and with u = tw. 

This can be formalized by a x formula. Since Den is a x partial function with a A domain, it's 

A.m 

We encode formulas the same way: 

If T and p are terms, the code for T = p is Triple(8, r ~ l ,  rpl), which we abbreviate 

rT = pl. 

If T and p are terms, the code for T < p is Triple(9, r ~ l ,  rpl), which we abbreviate 

'T < P1. 

If 4 is a formula, the code for -4 is Pair(l0, r@), which we abbreviate r- @. 

If 4 and q are formulas, the code for ( 4  V q )  is Triple(l1, r@, v), which we 

abbreviate r(4 V $)I. 

If 4 and q are formulas, the code for ( 4  A q )  is Triple(l2, r e ,  rql), which we 

abbreviate '(4 A qp.  
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If 4 and q are formulas, the code for ( 4  - q )  is Triple(l3, r e ,  v), which we 

abbreviate r(@ - $)I. 

If 4 and q are formulas, the code for ( 4  - q )  is Triple(l4, r e ,  rql), which we 

abbreviate '(4 - qp.  

1f 4 is a formula, the code for (b'%)@ is Triple(lS,n, r e ) ,  which we abbreviate 

Tb'rZ34'- 
If 4 is a formula, the code for (I%)$ is Triple(l6,n, r@), which we abbreviate 

'(3rZ3@ 

Theorem. The set of codes of formulas is A. 

The proof is so close to the proof of the analogous proof for codes of terms that there's no real 

point in going through it. Same for the proof that the set of pairs <x,y> with x the code of a 

subformula of the formula coded by y is A. We define structure trees for formulas the way we did 

for terms, and once again we have unique readability. 

Theorem. The function Sub that, for 8 a formula, T a term, and n a natural number, 

takes < a l p ,  to @%lTl is A. 

Proof: First note that the function that, given terms T and a natural number n, takes < r p 1 , n , TI> to 

rpX.1~1 is 2 ,  and hence, as a 2 partial function with a A domain, A. That's so because the value 

the function takes with input < 'pl,n, is equal to z if and only if there is a finite set s with the 

following properties: 

Pair( rp1,z) is in s. 

If y is in s, then lst(y) and 2nd(y) are both in s. 

If Pair(Pair(1 , l),y) is in s, then y = Pair(1,l ,). 

If Pair(Pair(2,i),y) is in s, with i + n, then y = Pair(2,i). 

If Pair(Pair(2,n),y) is in s, then y = 91. 

If Pair(Pair(4,u),y) is in s, then lst(y) = 4 and Pair(u,2nd(y)) is in s. 
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If Pair(Triple(S,u,v),y) is in s, then 1 st(y) = 5 and Pair(u,2ndin3(y)) and 

Pair(v,3rdin3(y)) are both in s. 

If Pair(Triple(6,u,v),y) is in s, then 1 st(y) = 6 and Pair(u,2ndin3(y)) and 

Pair(v,3rdin3(y)) are both in s. 

If Pair(Triple(7,u,v),y) is in s, then 1 st(y) = 7 and Pair(u,2ndin3(y)) and 

Pair(v,3rdin3(y)) are both in s. 

If 0 is an atomic formula, r a term, and n a number, @%/,1 is given by: 

rp = ox"/, 1 = Triple(8, rps/,l, Fox./,'). 

rp < ox"/, 1 = Triple(9, rpX.1~1, ro~/,l). 

To complete the proof, we need to do the same thing with formulas that we just did with terms. I 

won't give the details, which are tedious and don't involve any new ideas.m 


