24.900 Fall 2012 lecture notes

Morphology

Why morphology matters?

Innate bias for words

- If it is true that words are not marked in the physical stream of speech, two questions:
 - Why did our brains in childhood (infancy) go to the trouble of working out how to parse the speech stream into words?
 - Why do our brains now go to the trouble of segmenting the speech stream into words?
 - Why is the nature of the analysis so nearly identical across languages?
- To question 1: One can give a functional explanation for the existence of words.
 - It is advantageous to construct a flexible communication system out of a smallish set of units, combined and recombined.

Keeps memory use under control. Allows novel utterances.

- But does this tell us how or why the baby acquires the words? Does she do a little communication theory and decide that speech must contain words? Probably not.
- Answer is an **innate bias** to perform some sort of analysis of speech (explaining 1 and 2), and probably **innate knowledge** of what the product of this analysis will look like (explaining 3).

Arbitrariness

• But remember:

The words themselves are not innately specified, or else they would not differ from speech community to speech community (*arbitrariness*).

- Arbitratriness pervades language... English *dog*, French *chien*, Russian *sobaka*...
- ...even in "onomatopoeia" how we represent animal sounds linguistically is fixed:1

cow: Dutch boeh, Hungarian bú, Thai maw maw (with mid tone), Bengali hamba dog: Russian gav-gav, Catalan bup-bup, Indonesian gong-gong

¹ http://en.wikipedia.org/wiki/Cross-linguistic_onomatopoeias#Animal_sounds

What is Innate (in this domain):

Drive to analyze speech into words.

What is Learned (in this domain): What the words actually are.

Morpheme: the minimal subpart of a word that expresses a meaning (or grammatical property)

Example: *dogs* contains two morphemes:

dogs = dog 'furry beast' + s 'plura $dogs \neq d$ 'furry' + og 'beast' + s 'plural'

2 How we learn words and morphemes

Rapidly!

• First words appear around age 1. (One-word stage.)

Kids already know more than they say:

- In 11-month old, selective looking reveals preference for pauses that coincide with word boundaries over pauses inserted between syllables of words.
- In 9-month old, no preference.

So what happened between 9 and 11?

How do you segment speech into words if you don't know the words? No magic bullet, it seems! Part of the story must be a statistical analysis of input data carried out by the child — and there are explicit proposals about this.

But a deeper question remains: Why does the baby perform this statistical analysis performed, and *why* are the results saved in memory (ultimately, in the lexicon)?

An approach to an answer:

An *instinct* for language acquistion. Innate knowledge coupled with environment-dependent learning.

3 The knowledge underlying use of a complex word

- *Productivity* of morphology:
- (1) industry, industrial, industrialize, industrialization., industrializational, industrializationalize, industrializationalization, ...

- There is no termination to the process, except that the words become too long and their meanings too complex to keep track of all the morphemes.
- An interesting difference between words and sentences: We have no problem parsing sentences with as many words as *industrializationalization* has morphemes (7 of them!) -- compare even *the process of turning a question about something else into a question about industrialization*, which has the same meaning but 14 words! The multi-word phrase is much easier to understand than the multi-morpheme word. We are not as good at parsing words as we are at parsing sentences.

• Distinctions: bound morpheme vs. free morpheme / open-class vs. closed-class

Industry is a word on its own. **free morpheme**

-ize, -al, and *-ation* are not. **bound morpheme**

- The free morpheme *industry* belongs to an **open class** of **lexical items**, an extendible class of items with a wide range of meanings. You can make up new ones, and are not surprised to learn new ones even in adulthood: *screeve*, *Obama*, *cromulent*.
- The opposite of "open class" is "closed class" (also known as "function words").

Since open class items can be coined at will (more or less), it is really the closed-class items that identify the language — that make English English, make French French etc. Lewis Carroll's poem Jabberwocky contains lots of unfamiliar ("nonsense") open-class items, but all its closed-class items — all its function words — are English. Crazy though the poem may sound, it is clearly a poem written in English!

'Twas brillig, and the slithy toves Did gyre and gimble in the wabe; All mimsy were the borogoves, And the mome raths outgrabe.

Compare a version in which the open-class words are replaced with normal English, but the function words are replaced with "non-sense". It no longer looks like English:

Glorm cloudy, yurk lim noisy frogs Rur croak yurk fidget uf lim lake; Caj nervous trid lim hunting dogs, Yurk lim hungry cats lay awake.

Or worse, replace both function words and open-class items with made-up words:

Glorm brillig, yurk lim slithnit tovem Rur gyre yurk gimble uf lim wabe; Caj mimsnit trid lim borogovem, Yurk lim mome rathem nusgrabe. Because the real poem truly is written in English (because its closed-class items are English), the notion "translating Jabberwocky" into a foreign language is a meaningful one, and lots of translations have been made.

- free vs. bound ≠ open vs. closed class
- For example:

There are **free** closed-class morphemes (prepositions, pronouns, articles...) There are **bound** open-class morphemes (un+kempt, sanit+ize)

4 How to build a morphologically complex word: the rule Merge

You have to start somewhere!

Step 0:

- Take a morpheme from the lexicon whose lexical entry does not say "I am a suffix" or "I am a prefix"... This starting point, which (as the textbook says) carries "the main meaning of the sentence", is the called **root**.
- Putting aside a special kind of complex word called a compound (to which we return next week) if there's a free morpheme in the word, it's the root.

Step 1:

- A <u>morphological rule</u> that we can call "**Merge**" takes an *appropriate* morpheme from the lexicon and glues it to the root. (We return soon to what we mean by "appropriate".)
- A non-root morpheme in a word is called an **affix.** So morphologically complex words are made up of a root and some number of affixes.

The lexical entry for each morpheme specifies

 its sound
 its meaning
 whether it is a root or affix
 its part-of-speech (category): N, V, A...
 if it is an affix, the part of speech it merges with:
 if it is an affix, its place of attachment:

 a. left edge (prefix)
 b. right edge (suffix)
 [c. after the first syllable, before the last syllable, before the main stress... (infix)]²

Step 2:

- The output of step 2 can undergo Merge again. Another affix can be attached to it.
- The element to which an affix attaches (whether a root or a morphologically complex word) is called its **base**.
- When an affix attaches to the root, the root is also its base. But when an affix attaches to a an already complex form, its base is not the root.

5 Trees

• A tree diagram can illustrate the internal structure of a word, and reflects how it was formed by one or more operations of Merge.

[see the textbook for lots of actual trees]

• Words really are trees (structures) -- not just strings of morphemes

For example ...

the suffix -ment attaches to a verb and produces a noun:

govern	government
adjourn	adjournment
treat	treatment
amuse	amusement
body $-X \rightarrow$	*bodiment
trance $-X \rightarrow$	*trancement
power $-X \rightarrow$	*powerment

• You might say: "the morpheme next to *-ment* must be a verb" as an alternative to "the base to which *-ment* attaches must be a verb".

The prefix en- (sometimes em-) forms verbs out of nouns (and adjectives):

body --> embody trance --> entrance power --> empower

Now notice that these verbs can take the suffix *-ment*. Even though the morpheme next to *-ment* is not a verb morpheme, <u>structurally</u> *-ment* is being added to a verb.

6 "Sound" in more detail

• Whether a morpheme even *has* a sound is arbitrary.

In English, the fact that a noun is singular is not represented by an overt morpheme (one can say there is a **zero morpheme**) — though plural is a morpheme with a sound of its own (*dog* vs. *dog-s*).

• Some morphemes that do have a sound do not have a sound of their own. Their sound is a copy of sounds already present in the base. This is called **reduplication**:

Example 1: Lakhota (Siouan, S. Dakota)

sg inanimate pl

gí	gigí	'to be rusty brown'
ská	skaská	'to be white'
∫á	ſaſá	'to be red'
thó	thothó	'to be blue or green'
3í	zizí	'to be yellow'

Sound: Copy first CV of the base.

Example 2: Ilocano (Austronesian, Phillippines)

sg	plural	
píŋgan	piŋpíŋgan	'dish'
tálon	taltálon	'field'
dálon	daldálon	'road'
bíag	bibíag	'lives'
nuáŋ	nunuáŋ	'carabao'
úlo	ulúlo	'head'
múla	mumúla	'plant'
táwa	tawtáwa	'window'

[•] An argument against this: find a *prefix* that makes a noun (or adjective) into a verb!

² Discussed below.

• In the lexical entry for plural, under the heading "sound", it says not -ness, or un-, but:

"Copy first (C)V(C) of the base." [C = consonant, V = vowel, parentheses = "if present...")

• Reduplication is extremely common in languages of the Austronesian group (Phillipines, Malaysia, Indonesia)

7 Allomorphs

• Sometimes the sound of a morpheme depends on the base to which it is attached, but is not a copy of that base. Such a morpheme will have different **arbitrary** (i.e. not copied) sounds depending on the base to which it attaches. These variants are called **allomorphs**.

Example 1: English plural depends on the identity of the base to which it attaches.

but...

dog-s, cat-s, horse-s

ox-en child-ren sheep-ø, deer-ø

Note that the -s plural is **productive**. It is the **default** plural marker which we apply in the absence of special knowledge about an irregular plural marker.

What is the plural of *wug*?

The situation is more complicated still: the default affix is -**z**, which regular phonology changes to /s/ for reasons we will discuss later. But after -s, -z, -ch, -sh, -j we get a vowel as well. This is more allomorphy...

What is the plural of *gruss*?

Sometimes the plural involves a change of vowel: mouse/mice, woman/women.

Example 2: English past tense:

Default is -d, but here too we have vowel changes, and sometimes both:

walk/walked, industrialize/industrialized run/ran, sing/sang, lead/led, strive/strove sleep/slept

Example 3: Latin forms of the verb meaning 'love'

	present	past	future
you (sg)	ama-s	ama-ba-s	ama-bi-s
she/he/it	ama-t	ama-ba-t	ama-bi-t
we	ama-mus	ama-ba-mus	ama-bi-mus
you (pl.)	ama-tis	ama-ba-tis	ama-bi-tis
but:			
<i>I</i>	am-(a)-o	ama-ba- <u>m</u>	ama-b(i)-o
they	ama-nt	amaba-nt	ama- <u>bu</u> -nt

The underlined bits are unexpected, and show allomorphs of the suffixes visible elsewhere in the chart.

8 "Place" in more detail

Point 1: The place of attachment must be listed in the lexicon, because it's arbitrary.

• For example, whether a morpheme with a particular affix is a prefix or a suffix varies across languages.

Example 1: Russian vs. Bulgarian comparative and superlative affixes.

[I think I didn't do this one in class, but here it is anyway]

Bulgarian:	smešna / <i>po</i> -smešna	umna / <i>po</i> -umna
Russian:	smešna / smešn-ee	umna / umn-ee ³
	'funny' / 'funnier'	'smart' / 'smarter'

Example 2: The affix meaning (roughly) *-ness* is a prefix in Kanuri, but a suffix (as in English) in Kurdish. It's also worth noting that English *-ness* attaches only (mostly) to adjectives, while its Kurdish cousin also attaches to nouns

Kanuri (Nilo-Saharan, Nigeria)

gana	'small'	nəmgana	'smallness'
kura	'big'	nəmkura	'bigness'
kurugu	'long'	nəmkurugu	'length'
karite	'excellent'	nəmkarite	'excellence'
dibi	'bad'	nəmdibi	'badness'

³ Ignore for present purposes the -a of *umna*, which is a morpheme marking it as a feminine adjective of a particular sort.

Kurdish (Indo-Iranian, Iraq)

aaqil	'wise'	aaqilii	'forethought'
diz	'robber'	dizii	'robbery'
drai3	'long'	draiʒii	'length'
zaanaa	'wise'	zaanaaii	'erudition'
garm	'warm'	garmii	'warmth'

We know: prefix (attach to left edge of base), suffix (attach to right edge of base)

• Now: **Infix**! Attach inside the base, according to a rule that refers to the base's sound structure.

Example 1: Bontoc (Austronesian, Philippines)

The infix -um- is positioned following the initial consonant of the base.

	'he is becoming'	
fikas	fumikas	'strong'
kilad	kumilad	'red'
bato	bumato	'stone'
fusul	fumusul	'enemy'

Example 2: Samoan (Austronesian, Samoa)

This example is interesting because it is also *reduplication*:

		"	'copy	penultimate	syllable	and p	osition	it next to	o the	original'	'
11.0	,		14 10 000	,							

'ne'	they		
manao	mananao	'wish'	
matua	matutua	'be old'	
malosi	malolosi	'be strong'	
punou	punonou	'bend'	
savali	savavali	'travel'	
pese	pepese	'sing'	
laga	lalaga	'weave'	
atama?i	atamama?i	'be wise'	
galue	galulue	'work'	
aloga	alologa	'love'	

In these cases, the morpheme is attached in the middle of the sounds belonging to another morpheme. This type of affixation is called **infixation**.

Example 3: *fuckin'* infixation (fan-*fuckin'*-tastic, Massa-*fuckin'*-chusetts, Missi-*fuckin'*-ssippi)⁴

• The infixation of *fuckin'*, which denotes a strong positive or negative attitude, appears to be determined by *stress* (accent). A first approximation at the correct rule is:

(2) *fuckin*'-infixation

Infix *fuckin*' to the left of the syllable that bears main stress.

Thus:

ŀ

3)	a. Massa-fuckin'-chusetts
out not :	b. *Massachu-fuckin's setts.

- because the syllable -chu- bears the main stress. Likewise:

(4)	a. Conn-fuckin'-ecticut [it helps to pause after the first syllable, or to draw it out]
but not:	b. *Connect-fuckin'-icut.
nor:	c. *Connecti-fuckin'-cut.

- This example shows that the rule does involve stress, and not counting syllables from the end. since the stress in *Connecticut* falls on the third syllable from the end (the antepenult), while the stress in *Massachusetts* falls on the next-to-last syllable (the penult), as we've seen.
- (5) un-fuckin'-believable
- What is especially worth noting about the whole phenomenon is that it really is **rule-governed**! We have clear intuitions about good vs. bad places to infix *fuckin'* within bases to which we have surely never heard this infixation rule applied.
- People sometimes think that parental input and correction is a key to language acquisition. Pretty unlikely here: ("No my little sweetheart, you know we don't say *Massachu-fuckin'-setts*. Say it properly, or you can't have dessert: *Massa-fuckin'-chusetts*. Very good!").

9 Multiple affixes

- In many languages, verbs or nouns bear a whole group of affixes. Often these affixes mark **agreement**: they represent properties like "plural" or "3rd person" that have no meaning on the verb, but agree with a plural or 3rd person word or phrase somewhere else in the sentence.
- These agreement affixes often make it possible to leave out the plural or 3rd person words, and just use a verb to express thoughts like "we saw him".
- Languages with complex morphology of this sort present nice puzzles that will plague your problem sets and exams in this class!

⁴ In British, Irish, Australian and New Zealand English, *bloody* can be used, and appears to follow exactly the same rule: *Massa-bloody-chusetts*, **Massachu-bloody-setts*, etc.

MIT OpenCourseWare http://ocw.mit.edu

24.900 Introduction to Linguistics Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.