Semantics 2

today I have a cold...

ambiguity:

- I once shot an elephant in my pajamas...
- Kicking baby considered to be healthy
- Flying planes can be dangerous
- Dr. Ruth talks about sex with newspaper editors

Another kind of ambiguity

Someone loves everyone.

"Someone loves everyone":

For each person, there is someone who loves them.

There is a single person who loves everyone.

Everyone in this room speaks two languages.

Everyone in this room speaks two

 languages.Two languages are spoken by everyone in this room.

Not obvious how to make this a structural ambiguity...

meanings of different kinds of NPs

Enrico Flor

meanings of different kinds of NPs

Enrico Flor [is an avid hangglider]

meanings of different kinds of NPs

The 24.900 TAs [are avid hanggliders]

meanings of different kinds of NPs

The 24.900 TAS [are avid hanggliders]
\{ Enrico, Peter, Yash, Anton\}

meanings of different kinds of NPs

Every Italian

??

meanings of different kinds of NPs

Every Italian="Enrico Flor, and
Stan Zompì, and Roberta D'Alessandro, and Guglielmo Cinque, and Monica Bellucci, and...."

meanings of different kinds of NPs

Every Italian

 [is an avid hangglider]"Enrico Flor, and
Stan Zompì, and
Roberta D'Alessandro, and
Guglielmo Cinque, and
Monica Bellucci,
and...."
"...are avid hanggliders"

meanings of different kinds of NPs

"No Italian"=

meanings of different kinds of NPs

"No Italian"= ???!!@\#\$?

meanings of different kinds of NPs

"No Italian"= • null set?

meanings of different kinds of NPs

"No Italian"=

- null set?
- a set containing no Italian?
(but which set?)

quantifiers are weird in other ways:

Paul is inside, and Paul is outside.

quantifiers are weird in other ways:

Paul is inside, and Paul is outside.

Several Americans are inside, and several Americans are outside.
-->some QPs fail the Law of Contradiction

quantifiers are weird in other ways:

Takashi is under 6' tall,
or Takashi is over 5^{\prime} tall.

quantifiers are weird in other ways:

Takashi is under 6' tall, or Takashi is over 5^{\prime} tall.

All Japanese men are under 6' tall, or all Japanese men are over 5 ' tall.
-->some QPs fail the Law of the Excluded Middle

Quantifier Meaning

Okay, so
No Turks
Several Americans
All Italians
Most Ukrainians...
don't refer to sets of people. So what do they mean?

A little quick set theory

A little quick set theory

$\{D, F\}=$ the $\underline{\text { intersection }}$ of $\underline{\Pi}$ and $\underline{\Phi} \quad(\underline{\Pi} \cap \underline{\Phi})$

A little quick set theory

$\{\mathrm{D}, \mathrm{F}\}=$ the $\underline{\text { intersection } \text { of } \underline{\Pi} \text { and } \underline{\Phi} \quad(\underline{\Pi} \cap \underline{\Phi}), ~(\underline{\Phi})}$
$\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}=$ the union of of $\underline{\Pi}$ and $\underline{\Phi}(\underline{\Pi} \cup \underline{\Phi})$

A little quick set theory

$\{\mathrm{D}, \mathrm{F}\}=$ the $\underline{\text { intersection }}$ of $\underline{\Pi}$ and $\underline{\Phi} \quad(\underline{\Pi} \cap \underline{\Phi})$ $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}=$ the union of of $\underline{\Pi}$ and $\underline{\Phi}(\underline{\Pi} \cup \underline{\Phi})$ $\{A, B, D\}$ is a subset of $\underline{\Pi}(\{A, B, D\} \subseteq \underline{\Pi})$

Quantifier Meaning
 a popular answer:

All Americans eat junk food.

Quantifier Meaning
 a popular answer:

All Americans eat junk food
denotes set of Americans denotes set of junk-food-eaters

Quantifier Meaning
 a popular answer:

All Americans eat junk food
denotes set of Americans denotes set of junk-food-eaters
all:set \#1 is a subset of set \#2

Quantifier Meaning

Some Americans eat junk food

denotes set of Americans denotes set of junk-food-eaters

Quantifier Meaning

Some Americans eat junk food
 denotes set of Americans denotes set of junk-food-eaters

some : the intersection of set \#1 and set \#2 is nonempty

Quantifier Meaning

No Americans eat nattoo denotes set of Americans denotes set of nattooeaters

no: the intersection of set \#1 and set \#2 is empty

Quantifier Meaning

all:set \#1 is a subset of set \#2 some : the intersection of set \#1 and set \#2 is nonempty
no: the intersection of set \#1 and set \#2 is empty
three: the intersection of set \#1 and set \#2 has cardinality three.

Quantifier Meaning

Natural language quantifiers are conservative, which means that you can always replace "set \#2" with "the intersection of set \#1 and set \#2", and get the same meaning.

Quantifier Meaning: conservativity

All opera singers smoke
$\{$ opera singers $\} \subseteq\{$ smokers $\}$

Quantifier Meaning: conservativity

All opera singers smoke
$\{$ opera singers $\} \subseteq\{$ smokers $\}$
All opera singers are opera singers who smoke
$\{$ opera singers $\} \subseteq\{\{$ smokers $\} \cap\{$ opera singers $\}\}$

Quantifier Meaning: conservativity

This isn't trivial. It's easy to imagine quantifiers which wouldn't be conservative:
glorp: the union of set \#1 and set \#2 has cardinality three.

Quantifier Meaning: conservativity

This isn't trivial. It's easy to imagine quantifiers which wouldn't be conservative:
glorp: the union of set \#1 and set \#2 has cardinality three.

Quantifier Meaning: conservativity

This isn't trivial. It's easy to imagine quantifiers which wouldn't be conservative:
glorp: the union of set \#1 and set \#2 has cardinality three.

Quantifier Meaning

All [Brazilians] [love soccer]=

Quantifier Meaning

All [Brazilians] [love soccer]=
\{Brazilians\} is a subset of
\{people who love soccer\}

Quantifier Meaning

All [Brazilians] [love soccer]=
\{Brazilians\} is a subset of
\{people who love soccer\}
($=\{\mathrm{x}$ such that $\underline{\mathrm{x}}$ loves soccer $\}$)
(replace the quantifier with a variable)

Quantifier Meaning

Soccer bores [all [Americans]]

Quantifier Meaning

Soccer bores [all [Americans]]

\{Americans\} is a subset of \{people whom soccer bores\}

Quantifier Meaning

Soccer bores [all [Americans]]

\{Americans\} is a subset of
\{people whom soccer bores\}
$(=\{$ x such that soccer bores $\underline{x}\})$
again, quantifier replaced w/variable

Quantifier Scope Ambiguity

[Some child] loves [every puppy]

Quantifier Scope Ambiguity

[Some child] loves [every puppy]

- interpreting every first:
\{puppies\} is a subset of
$\{x$ such that some child loves \underline{x} \}

Quantifier Scope Ambiguity

[Some child] loves [every puppy]

- interpreting every first:
\{puppies\} is a subset of
\{x such thatsome child loves x \}
now how do we interpret this part?

Quantifier Scope Ambiguity

[Some child] loves [every puppy]

- interpreting every first:
\{puppies\} is a subset of
\{x such that:
the intersection of \{children\} with
\{y such that y loves x \} is nonempty\}

Quantifier Scope Ambiguity

[Some child] loves [every puppy]

- translating this from Semantics into English: every member x of \{puppies $\}$ is such that: the intersection of \{children\} with $\{y$ such that y loves $x\}$ is nonempty

Quantifier Scope Ambiguity

[Some child] loves [every puppy]

- translating this from Semantics into English: every member of \{puppies $\}$ is such that: there is some child that loves it.

Quantifier Scope Ambiguity

[Some child] loves [every puppy]

 every member of \{puppies is such that: there is some child that loves it.

Quantifier Scope Ambiguity

[Some child] loves [every puppy]
We just saw how this gets interpreted if we interpret every puppy first. How about if we interpret some child first?

Quantifier Scope Ambiguity

[Some child] loves [every puppy]

The intersection of \{children\} and \{x such that x loves every puppy \} is nonempty.

Quantifier Scope Ambiguity

[Some child] loves [every puppy]
The intersection of \{children\} and \{x such that loves every puppy is nonempty.

next we interpret this...

Quantifier Scope Ambiguity

[Some child] loves [every puppy]
The intersection of \{children\} and \{x such that:
\{puppies\} is a subset of $\{y$ such that x loves \mathbf{y} \} $\}$
is nonempty.

Quantifier Scope Ambiguity

[Some child] loves [every puppy]
The intersection of \{children\} and \{x such that:
\{puppies\} is a subset of
\{y such that x loves y \} \}
is nonempty. (...now to translate this back into English.....)

Quantifier Scope Ambiguity

[Some child] loves [every puppy]

There is at least one child, x, such that:
\{puppies \} is a subset of \{things such that x loves them $\}$ \}

Quantifier Scope Ambiguity

[Some child] loves [every puppy]

There is at least one child such that: all puppies are loved by them.

Images © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Quantifier Scope Ambiguity [Some child] loves [every puppy]

There is at least one child such that: all puppies are loved by them.
every puppy is such that: there is some child that loves it.

Quantifier Scope Ambiguity [Some child] loves [every puppy]

There is at least one child such that: all puppies are loved by them.
every puppy is such that: there is some child that loves it.
-->just saw how to get this ambiguity to follow from different orders of quantifier interpretation.

Quantifier Scope Ambiguity

Quantifier Scope Ambiguity

Semantics 2

Quantifier Scope Ambiguity

Quantifier Scope Ambiguity

Quantifier Raising
 Most people ate two cakes.

Quantifier Raising

Hungarian:
Tegnap a legtöbb ember két süteményből evett Yesterday most people from two cakes ate
'Yesterday, most people ate from two cakes' (that is, for most of the individuals x, it's true that x ate from two cakes)

Quantifier Raising

Hungarian:
Tegnap a legtöbb ember két süteményből evett Yesterday most people from two cakes ate
'Yesterday, most people ate from two cakes'
Tegnap két süteményből a legtöbb ember evett Yesterday from two cakes most people ate
'Yesterday, there were two cakes that most people ate from'
(remember wh-in-situ?)

More on Quantifier Raising (QR)

Someone loves everyone.

More on Quantifier Raising (QR)

Someone loves everyone.

- $\forall x \exists y[y$ loves $x]$
- $\exists y \forall x$ [y loves $x]$

More on Quantifier Raising (QR)

Someone loves everyone.

- $\forall x$ ヨy [y loves $x]$
- ヨy $\forall x$ [y loves x]
how do we capture this ambiguity?

More on Quantifier Raising (QR)

Someone loves everyone.

- $\forall x$ ヨy [y loves $x]$
- $\exists \mathrm{y} \forall \mathrm{x}$ [y loves x]
how do we capture this ambiguity?
\rightarrow structurally: quantifiers move

More on QR

A guard is standing in front of every building.

More on QR

A guard is standing in front of every building.

Images © source unknown. All rights reserved. This content is excluded from our Creative

More on QR

A guard is standing in front of every building.

Images © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

More on QR

A guard said that I should stand in front of every building.
same ambiguity?

More on QR

A guard said that I should stand in front of every building.
same ambiguity? No:
$\rightarrow \mathrm{QR}$ is clause-bound.

More on QR

A guard seems to be standing in front of every building.
...ambiguous?

More on QR

A guard seems to be standing in front of every building.
...ambiguous? why?

More on QR

A guard seems to be standing in front of every building.
...ambiguous? why?
I seem to a guard to be standing in front of every building.

More on QR

A guard seems to be standing in front of every building.
I seem to a guard to be standing
in front of every building.
\rightarrow when is ambiguity possible?

More on QR

guard seems (a guard) to be standing in front of every building.
\rightarrow when is ambiguity possible?

MIT OpenCourseWare
https://ocw.mit.edu
24.900 Introduction to Linguistics Spring 2022

For more information about citing these materials or our Terms of Use, visit https://ocw.mit.edu/terms.

