24.901 Phonetics-3: syllables and prosodic (suprasegmental) features

1. syllable

- no agreed upon phonetic definition of syllable
- concept is inferred rather than perceived (Steriade 2000)
- syllabic writing systems are ubiquitous vs. alphabetic
- suggests that parsing speech into syllables is easier than into phonemes (e.g. Japanese hiragana)
- many verse structures built on number of syllables (French alexandrine: 12 syllables divided by a pause (caesura) between 6th and 7th; Berber 12 syllable lines with heavy syllable in 3rd, 7th, and 12th position (Dell & Elmedlaoui 2002)

2. internal structure: onset-rhyme (nucleus coda)

- structure preservation in spoonerisms: *our dear queen -> our queer dean* break at onset.rhyme
- cross-linguistically rhyme is domain for poetic rhyme; rhyme books crucial to reconstruction of Chinese;
- **open** syllable ends in a vowel and **closed** syllable ends in a consonant
- phonetic definition in terms of chest pulses (Stetson) not confirmed
- peaks of sonority: sonority is roughly the acoustic intensity of a sound with loudness being a primary auditory correlate.
- sonority hierarchy: vowels (low,mid,high) > glides > r > liquids > nasals > fricatives > stops (voiced > voiceless) see CIP 10.1
- correlates with degree of opening of vocal tract
- no salient peaks lead to less robust judgments of syllable number: prism, file
- consonantal onset and coda are frequent sites of phonotactic restrictions (syllabic licensing): in English the velar nasal [ŋ] is barred from the onset while in nonrhotic dialects [r] is banned from the coda

[3] syllable parsing

- given VCV other things being equal, V.CV parse is preferred
- Fujimura's (1978) experiment starts with cluster with different points of articulation: *apta, atpa, then shorten* closure duration to that of a single stop—but formant transition cues conflict: CV transitions predominate over VC
- judgments of syllabic division are inferred rather than based on a direct phonetic percept.
- judgements based on possible word initial and word final clusters
- languages with no clusters at beginning and end of word will divide cluster: CVC.CVC (e.g. Korean). cf. English, Romance where V.CR (ál.ge.bra) but VR.CV (al.bér.ta)

- #bra is a possible word initial cluster while #rta is not
- syllabification parse here may be analogous to treating each syllable as if it were a word
- but if we get a consonant that is not permitted initially then syllabification goes against the Onset preference. Cf. Korean no velar nasal initially. VŋV is parsed Vŋ.V

tam	can	k*oŋ
tam-i	can-i	k*oŋ-i
'wall'	'cup'	'pheasant'

 cf. English *lamént* vs. *lémon*: [lɛ] not possible word-finally; thus lɛ.mon is not a good parse and [m] is perceived as ambisyllabic (straddles syllable boundary and belongs to both syllables)

[4]. Stress: will discuss later: phonetic correlates include greater muscular energy (subglottal pressure) with increased pitch and duration

[5]. Length

- long vs. short vowels: Latin, Czech, German; ratio of duration contrast is 1.3 : 1 up to 2: 1
- long (geminate) consonant: Italian 2 to 3 times longer
- both long vowels and consonants: Hungarian, Arabic, Japanese, Finnish
- inherent duration of vowels: low vowel [a] is 20-25 ms. longer than high vowel [i]
- in a CVC syllable more time is required for tongue to move from consonantal constriction to open low target in CVC syllable
- global effects:
 - the number of segments in a syllable and the number of syllables in a word can decrease the length of the individual segments
 - phrase-final lengthening
 - > tempo: faster tempo compresses longer segments (vowels) more
- Many languages avoid long vowel in closed syllable
 - Italian lengthens stressed vowels of nonfinal syllable, but not when consonant in coda

fate	'do'	fat.te	'done'	
177 m	ıs.	126 m	s.	D'Imperio & Rosenthall 1999

> Egyptian Arabic non-final closed-syllable shortening

baab	'door'	beet	'house'
bab-na	'our door'	bit-na	'our house'

English: keep, kept

> Cf. Hungarian, which retains contrast

	V	С	
hal	151	182	duration in ms
hall	177	272	
a:l	285	172	
ne:z	287	198	
ne:zz	263	288	

[6] tone: pitch Fo

- gender: average of 130 Hz for adult males and 220 for females
- intrinsic F0: high vowels greater by c. 15 Hz (JND for speech is 10 Hz)
- not clear why; speaker control to enhance height contrast ?
- after voiceless obstruent F0 is 5-10 Hz greater (basis of tonogenesis); again apparently under speaker control to enhance voicing contrast

[7] tonogenesis

- in many Asian languages tones derive historically from the phonemicization of redundant F0 differences that accompany voiced vs. voiceless obstruents in syllable onset
- F0 is typically 5-10 Hz higher after a voiceless obstruent as opposed to a voiced one
- in tonogenesis the F0 difference is increased while the voicing contrast on the consonant is decreased and eventually lost resulting in a tonal contrast
- prevalent in East Asian languages
- example from Beijing Mandarin
- tone 1 [55] High and tone 2 [35] Rise both go back to the same level pitch category (*ping*) in Middle Chinese
- the category split as a function of the voicing of the onset consonant

	Middle Chii	Middle Chinese		Beijing Mandarin		
voiceless (yin)	si		sī	[55]	'poetry'	
	ро		pō	[55]	'hillside'	
voiced (yang)	zi		sî	[35]	'time'	
	bo		pó	[35]	'old woman'	
Punjabi tones (Bhatia 1975)	Hindhi	Punjabi	i			
Tunjuor tones (Dilatia 1973)	ghor-a	kòra	<u>L</u>	'horse'		
	dhol	tòl		'drum'		

• voiced aspirates devoice and deaspirate but with a low tone

[8] lexical tonal distinctions

• level tones

\triangleright	two-way contrast: Lingala (Bantu Congo)				
	mo-tó	'head'	lo-lém	0	'tongue'
	mo-to	'person'	mo-ásî		'woman'
			mo-sis	á	'vein'
			li-kolo		'leg'
\succ	three-way cont	rast: Buli (Gur (Ghana)		
			syúk	'path'	
			syūk	'navel'	
			syùk	'fish'	
contou	r tones				

rise vs. fall	Thai	[Ladefoged CI	P 10.4]		
high	ná:	'aunt'	rise	nă:	'thick'
mid	nā:	'field'	fall	nâ:	'face'
low	nà:	'nickname'			

[9] register

٠

• splits pitch space into an upper and lower region

Cantonese	[Ladefo	oged CIP	Chapte	r 10 exercise G]
high	si	55	'poem'	
mid	si	33	'to try'	
low	si	22	'matter	1
extra low	si	11	'time'	
mid rise	si	35	'to caus	3e'
low rise	si	13	'city'	
high fall	si	53	'silk'	[for many current speakers merges with 55]

• just as a vowel length contrast is often supplemented with a vowel quality contrast (e.g. Arabic) so a tonal height contrast is often accompanied by a laryngeal (voice quality) contrast so that breathy voice goes with lower tone

[9] F0 used for intonation contours in English

- declaratives have falling contour
- yes-no have rise
- rise also signals continuation, as in a list
- but these are just cross-linguistic tendencies; e.g. in Hungarian yes-no question ends in a fall

Image by MIT OpenCourseWare.

24.901 Language and Its Structure I: Phonology Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.