Problem Set #6

PROBLEM SET #6

Read the two page handout giving an overview of the system

Using the sample calculations as a model, calculate the truth-conditions (starting with an arbitrary filler a and an arbitrary world w) for the following sentence:

Hannibal is a dog who t saw Shelby.

For each step of your calculation, give an annotation of what justifies the step (lexicon entry, the FA, PA, PM principles, the definition of the λ -notation).

<u>Handout</u>

24.903 Our System So Far

[Based on material from Heim $\acute{\sigma}$ Kratzer 1998]

I. THE LAMBDA NOTATION FOR FUNCTIONS

- (I) Read " $[\lambda \alpha . \beta]$ " as either (i) or (ii), whichever makes sense.
 - (i) "the function which maps every α to β "
 - (ii) "the function which maps every α to I, if β , and to 0 otherwise"

2. Lexicon

Some words:

- (2) For any world w and (filler) individual a,
 - a. $[Shelby]^{w,a} = Shelby.$
 - b. $\llbracket Hannibal \rrbracket^{w,a} = Hannibal.$
 - c. $\llbracket barks \rrbracket^{w,a} = \lambda x.x \text{ barks in } w.$
 - d. $\llbracket dog \rrbracket^{w,a} = \lambda x.x$ is a dog in w.
 - e. $\llbracket \text{smart} \rrbracket^{w,a} = \lambda x.x \text{ is smart in } w.$
 - f. $[saw]^{w,a} = \lambda x. \lambda y. y saw x in w.$

The special rule for traces:

- (3) For any world w and (filler) individual a, $[t]^{w,a} = a$.
- 3. FUNCTIONAL APPLICATION
- (4) Functional Application (FA)
 For any world w and (filler) individual α, if α is a branching node, {β, γ} the set of α's daughters, and [[β]]^{w,α} is a function whose domain contains [[γ]]^{w,α}, then [[α]]^{w,α} = [[β]]^{w,α}([[γ]]^{w,α}).
- 4. Predicate Abstraction
- (5) Predicate Abstraction (PA)
 For any world w and (filler) individual α, if α is a branching node whose daughters are a relative pronoun and β, then [[α]]^{w,α} = λx. [[β]]^{w,x}.

Kai von Fintel: 24.903 Our System

5. Predicate Modification

(6) Predicate Modification (PM)

For any world *w* and (filler) individual α , if α is a branching node, $\{\beta, \gamma\}$ the set of α 's daughters, and if $[\![\beta]\!]^{w,\alpha}$ and $[\![\gamma]\!]^{w,\alpha}$ are both functions from individuals to truth-values (one-place predicates), then $[\![\alpha]\!]^{w,\alpha} = \lambda x$. $[\![\beta]\!]^{w,\alpha}(x) = [\![\gamma]\!]^{w,\alpha}(x) = I$.

6. Two Sample Calculations

Pick an arbitrary filler, say a and an arbitrary world w.

(7) $[[\text{Hannibal is a smart dog}]^{w,a}$ $= [[\text{Hannibal (smart dog}]]^{w,a}$ $= [[\text{smart dog}]^{w,a}([[\text{Hannibal}]]^{w,a})$ $= [[\text{smart dog}]^{w,a} (\text{Hannibal})$ $= [\lambda x. [[\text{smart}]]^{w,a}(x) = [[\text{dog}]]^{w,a}(x) = I] (\text{Hannibal})$ $= I \text{ iff } [[\text{smart}]]^{w,a} (\text{Hannibal}) = [[\text{dog}]]^{w,a} (\text{Hannibal}) = I$ $\text{ iff } [\lambda x.x \text{ is smart in } w] (\text{Hannibal}) = [\lambda x.x \text{ is a dog in } w] (\text{Hannibal}) = I$ iff [Hannibal is smart in w and Hannibal is a dog in w.

(8) [[Hannibal is who Shelby saw t]]^{w,a}

- = \llbracket who Shelby saw t $\rrbracket^{w,a}(\llbracket$ Hannibal $\rrbracket^{w,a})$
- = \llbracket who Shelby saw t \rrbracket ^{w,a} (Hannibal)
- = λx . [Shelby saw t] w,x (Hannibal)
- = [[Shelby saw t]]^{w,}Hannibal
- $= [[saw]^{w}, Hannibal([t]^{w}, Hannibal)]([Shelby]^{w}, Hannibal)$
- = $[[saw]^{w,Hannibal}$ (Hannibal)] (Shelby)
- = $[(\lambda x. \lambda y. y \text{ saw } x \text{ in } w) \text{ (Hannibal)}] \text{ (Shelby)}$
- = $[\lambda y. y \text{ saw Hannibal in } w]$ (Shelby)
- = 1 iff Shelby saw Hannibal in *w*.

7. Problem Set #6

Using the sample calculations as a model, calculate the truth-conditions (starting with an arbitrary filler a and an arbitrary world w) for the following sentence:

Hannibal is a dog who t saw Shelby.

For each step of your calculation, give an annotation of what justifies the step (lexicon entry, the FA, PA, PM principles, the definition of the λ -notation).