MIT OpenCourseWare
http://ocw.mit.edu

24.910 Topics in Linguistic Theory: Propositional Attitudes

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

SOLUTIONS: Assignment for Week 3 (Feb. 24)

* [From Heim \& Kratzer] Exercise 2 parts e-h (pp. 39-40)

[Note: I've put some items in bold to bring attention to the parts of the expression that are relevant at each step. You don't have to do this.]
$>(\mathrm{e}):$
$[\lambda \mathbf{f} \cdot[\lambda \mathrm{x} \cdot \mathrm{f}(\mathrm{x})=1$ and x is gray]] ($[\lambda \mathbf{y} \cdot \mathbf{y}$ is a cat] $)$
$=[\lambda x \cdot[\lambda y \cdot y$ is a cat $](x)=1$ and x is gray $]$
$=[\lambda x . x$ is a cat and x is gray $]$
$>$ (f):
$[\lambda \mathbf{f} \cdot[\lambda \mathrm{x} \cdot \mathrm{f}(\mathrm{x})(\mathrm{Ann})=1]]([\lambda \mathbf{y} \cdot[\lambda \mathbf{z} \cdot \mathbf{z}$ saw $\mathbf{y}]])$
$=[\lambda x \cdot[\lambda y \cdot[\lambda z \cdot z$ saw $y]](x)(A n n)=1]$
$=[\lambda \mathrm{x} \cdot[\lambda \mathrm{z} \cdot \mathrm{z}$ saw x$]($ Ann $)=1]$
$=[\lambda \mathrm{x}$. Ann saw x$]$
$>(\mathrm{g}):$
[$\lambda \mathrm{x} \cdot[\lambda \mathbf{y} \cdot \mathrm{y}>3$ and $\mathrm{y}<7](\mathbf{x})]$
$=[\lambda x . x>3$ and $x<7]$

$>$ (h):

$[\lambda z \cdot[\lambda y \cdot[\lambda x . x>3$ and $x<7](y)](z)]$
$=[\lambda z \cdot[\lambda y \cdot y>3$ and $y<7](z)]$
$=[\lambda z . z>3$ and $z<7]$

* [From von Fintel \& Heim] Exercise 1.2 (p. 10)

[Also see the handout from $\mathbf{2 / 1 0 / 0 9}, \mathrm{p} .4]$
For the purposes of this solution, I'm going to skip the steps of putting together the parts of the sentential argument a famous detective lives at 221B Baker St. (let's call this S):
$>$ Intension of S: $\quad\left[\lambda \mathrm{w}^{\prime}\right.$. a famous detective lives at 221B Baker St. in $\left.\mathrm{w}^{\prime}\right]$
At this point in the reading we're working with the most simple lexical entry for in the world of Sherlock Holmes, where we've further stipulated that \mathbf{w}_{9} is the world as presented in the Sherlock Holmes stories:
$>$ 【In the world of Sherlock Holmes $\rrbracket^{\mathrm{w}}=\left[\lambda \mathrm{p}_{<\mathrm{s}, \mathrm{t}} \cdot \mathrm{p}\left(\mathrm{w}_{9}\right)\right]$
Here's the computation (evaluating at w_{7}):
$>$ 【In the world of Sherlock Holmes，a famous detective lives at 221B Baker St $\rrbracket^{w 7}$ $=\llbracket$ in the world of Sherlock Holmes $\rrbracket^{\mathrm{w} 7}$（intension of S ）
$=\llbracket$ in the world of Sherlock Holmes $\rrbracket^{\mathrm{w} 7}\left(\left[\lambda \mathrm{w}^{\prime}\right.\right.$. a famous detective lives at 221B Baker St．in w＇］）
$=\left[\lambda \mathbf{p}_{\mathrm{s}, \mathrm{t}} \cdot \mathrm{p}\left(\mathrm{w}_{9}\right)\right]\left(\left[\lambda \mathbf{w}^{\prime}\right.\right.$. a famous detective lives at 221B Baker St．in $\left.\left.\mathrm{w}^{\prime}\right]\right)$
$=\left[\lambda \mathrm{w}^{\prime}\right.$. a famous detective lives at 221B Baker St．in $\left.\mathrm{w}^{\prime}\right]\left(\mathrm{w}_{9}\right)$
$=\left(\right.$ true iff）a famous detective lives at 221B Baker St．in w_{9}

＊［From von Fintel \＆Heim］Exercise 1.3 （page 11）

Keep in mind that we＇re using the simple version of the intensional semantics，as above．

First，let＇s give the extension and intension of the two conjuncts：
＞Extensions：
\llbracket Holmes is quick $\rrbracket^{\mathrm{w}}=1 \mathrm{iff}$ Holmes is quick in w
【Watson is slow】 ${ }^{\mathrm{w}}=1$ iff Watson is slow in w
$>$ Intensions：
Intension of Holmes is quick：$\left[\lambda \mathrm{w}^{\prime}\right.$. ． $\mathrm{HHolmes}^{\text {is }}$ quick $\left.\rrbracket^{\mathrm{w}^{\prime}}\right]$
$=\left[\lambda w^{\prime}\right.$. Holmes is quick in $\left.w^{\prime}\right]$
Intension of Watson is slow：［ $\lambda \mathrm{w}^{\prime}$ ．［WWatson is slow $\left.\rrbracket^{\mathrm{w}_{1}}\right]$
$=\left[\lambda \mathrm{w}^{\prime}\right.$ ．Watson is slow in $\left.\mathrm{w}^{\prime}\right]$
$>$ Now let＇s go on to the computation．The first part is the same in both cases：【In the world of Sherlock Holmes，Holmes is quick and Watson is slow】w
$=\llbracket \mathrm{in}$ the world of Sherlock Holmes \rrbracket^{w}（ $\lambda \mathrm{w}^{\prime}$ ．\llbracket Holmes is quick and Watson is slow $]^{W_{1}}$ ）
$=\left[\lambda p_{<s, t>} \cdot p\left(w_{9}\right)\right]\left(\left[\lambda \mathrm{w}^{\prime} . \llbracket\right.\right.$ Holmes is quick and Watson is slow $\left.\left.\rrbracket^{\mathrm{w}^{\prime}}\right]\right)$
$=\left[\lambda \mathrm{w}^{\prime} . \llbracket H\right.$ Holmes is quick and Watson is slow $\left.\rrbracket^{\mathrm{w}_{1}}\right]\left(\mathrm{w}_{9}\right)$
$=\llbracket H o l m e s$ is quick and Watson is slow $\rrbracket^{\text {w9 }}$
At this point，we have to do the two computations separately：
$>$ With extensional and：\quad 【and $\rrbracket^{w}=\left[\lambda \mathbf{u}_{\mathbf{t}} \cdot\left[\lambda \mathbf{v}_{\mathbf{t}} \cdot \mathbf{u}=\mathbf{v}=\mathbf{1}\right]\right]$
 （ \llbracket Holmes is quick $\rrbracket^{\text {w9 }}$ ）
$=\left[\lambda \mathbf{u}_{\mathbf{t}} \cdot\left[\lambda \mathbf{v}_{\mathbf{t}}, \mathbf{u}=\mathbf{v}=\mathbf{1}\right]\right]\left(\llbracket\right.$ Watson is slow $\left.\rrbracket^{\mathrm{w} 9}\right)\left(\llbracket\right.$ Holmes is quick $\left.\rrbracket^{\mathrm{w} 9}\right)$
$=\left[\lambda v_{t} \cdot \llbracket\right.$ Watson is slow $\left.\rrbracket^{w 9}=v=1\right]\left(\llbracket\right.$ Holmes is quick $\left.\rrbracket^{w 9}\right)$
$=($ true iff $) \llbracket$ Watson is slow $\rrbracket^{\mathrm{w} 9}=\llbracket$ Holmes is quick $\rrbracket^{\mathrm{w} 9}=1 \rrbracket$
$=$ (true iff) Watson is slow in W_{9} and Holmes is quick in W_{9}
$>$ With intensional and: \quad Iand $\rrbracket^{\mathrm{w}}=\left[\lambda \mathbf{p}_{<\mathrm{s}, \mathrm{t}} \cdot\left[\lambda \mathbf{q}_{<\mathrm{s}, \mathrm{t}} \cdot \mathbf{p}(\mathbf{w})=\mathbf{q}(\mathbf{w})=1\right]\right]$
$\llbracket H o l m e s$ is quick and Watson is slow $\rrbracket^{\mathrm{w} 9}=\llbracket$ and $\rrbracket^{\mathrm{w} 9}\left(\left[\lambda \mathrm{w}^{\prime} . \llbracket\right.\right.$ Watson is slow $\left.\left.\rrbracket^{\mathrm{w}^{\prime}}\right]\right)$ ($\left.\left.\left[\lambda \mathrm{w}^{\prime} \cdot \llbracket H o l m e s \text { is quick }\right]^{\mathrm{w}^{\mathrm{L}}}\right]\right)$
$\left.=\left[\lambda \mathbf{p}_{<\mathrm{s}, \mathrm{t}} \cdot\left[\lambda \mathbf{q}_{<\mathrm{s}, \mathrm{t}} \cdot \mathbf{p}\left(\mathbf{w}_{\mathbf{9}}\right)=\mathbf{q}\left(\mathbf{w}_{\mathbf{9}}\right)=\mathbf{1}\right]\right]\left(\left[\lambda \mathrm{w}^{\prime} . \llbracket \mathrm{Watson} \text { is slow }\right]^{\mathrm{w}^{\prime}}\right]\right)$
($\left.\left[\lambda \mathrm{w}^{\prime} . \llbracket H o l m e s ~ i s ~ q u i c k ~\right]^{\mathrm{w}^{\prime}}\right]$)
$=\left[\lambda \mathrm{q}_{\mathrm{s}, \mathrm{t}} \cdot\left[\lambda \mathbf{w}^{\prime} \cdot \llbracket \mathbf{W a t s o n}\right.\right.$ is slow $\left.\left.\rrbracket^{\mathrm{w}^{\prime}}\right]\left(\mathrm{w}_{9}\right)=\mathrm{q}\left(\mathrm{w}_{9}\right)=1\right]$
($\left.\left[\lambda \mathrm{w}^{\prime} . \llbracket \text { Holmes is quick }\right]^{\mathrm{W}^{\prime}}\right]$)
$=\left[\lambda \mathrm{q}_{\mathrm{ss,t}} \cdot \llbracket \mathrm{~W}\right.$ atson is slow $\left.\rrbracket^{\mathrm{w} 9}=\mathrm{q}\left(\mathrm{w}_{9}\right)=1\right]\left(\left[\lambda \mathrm{w}^{\prime} . \llbracket\right.\right.$ Holmes is quick $\left.\left.\rrbracket^{\mathrm{w}^{\prime}}\right]\right)$
$=($ true iff $) \llbracket$ Watson is slow $\rrbracket^{\mathrm{w} 9}=\left[\lambda \mathrm{w}^{\prime} . \llbracket\right.$ Holmes is quick $\left.\left.\rrbracket^{\mathrm{w}_{1}}\right]\left(\mathrm{w}_{9}\right)=1\right]$
$=$ (true iff) \llbracket Watson is slow $\rrbracket^{\mathrm{w} 9}=\llbracket$ Holmes is quick $\rrbracket^{\mathrm{w} 9}=1$
$=\left(\right.$ true iff) Watson is slow in w_{9} and Holmes is quick in w_{9}

* [From von Fintel \& Heim] Exercise 2.1 (page 19)
[Discussed in class - see handout from 2/24/09, pp. 3-4]

