24.910 Topics in Linguistic Theory: Propositional Attitudes Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

SOLUTIONS: Assignment for Week 3 (Feb. 24)

	: I've put some items in bold to bring attention to the parts of the expression that levant at each step. You don't have to do this.]
\succ	(e):
	$[\lambda \mathbf{f} \cdot [\lambda \mathbf{x} \cdot \mathbf{f}(\mathbf{x}) = 1 \text{ and } \mathbf{x} \text{ is gray}]] ([\lambda \mathbf{y} \cdot \mathbf{y} \text{ is a cat}])$
	= $[\lambda \mathbf{x} \cdot [\lambda \mathbf{y} \cdot \mathbf{y} \text{ is a cat}] (\mathbf{x}) = 1 \text{ and } \mathbf{x} \text{ is gray}]$
	= $[\lambda x \cdot x is a cat and x is gray]$
	(f):
	$[\lambda f . [\lambda x . f(x)(Ann) = 1]] ([\lambda y . [\lambda z . z saw y]])$
	$= [\lambda \mathbf{x} \cdot [\lambda \mathbf{y} \cdot [\lambda \mathbf{z} \cdot \mathbf{z} \text{ saw } \mathbf{y}]] (\mathbf{x})(Ann) = 1]$
	$= [\lambda \mathbf{x} \cdot [\mathbf{\lambda} \mathbf{z} \cdot \mathbf{z} \text{ saw } \mathbf{x}](\mathbf{Ann}) = 1]$
	$= [\lambda x . Ann saw x]$
	(g):
	$[\lambda \mathbf{x} \cdot [\mathbf{\lambda} \mathbf{y} \cdot \mathbf{y} > 3 \text{ and } \mathbf{y} < 7] (\mathbf{x})]$
	= $[\lambda x \cdot x > 3 \text{ and } x < 7]$
	(h):
	$[\lambda z . [\lambda y . [\lambda x . x>3 and x<7] (y)] (z)]$
	= $[\lambda z . [\lambda y . y>3 and y<7] (z)]$
	= $[\lambda z \cdot z > 3 \text{ and } z < 7]$

[Also see the handout from 2/10/09, p. 4]

For the purposes of this solution, I'm going to skip the steps of putting together the parts of the sentential argument *a famous detective lives at 221B Baker St.* (let's call this S):

> Intension of S: $[\lambda w']$ a famous detective lives at 221B Baker St. in w']

At this point in the reading we're working with the most simple lexical entry for *in the world of Sherlock Holmes*, where we've further stipulated that \mathbf{w}_9 is the world as presented in the Sherlock Holmes stories:

 \succ [[In the world of Sherlock Holmes]]^w = [λp_{<s,t>}. p(w₉)]

Here's the computation (evaluating at w₇):

▶ [[In the world of Sherlock Holmes, a famous detective lives at 221B Baker St]]^{w7}

= \llbracket in the world of Sherlock Holmes \rrbracket ^{w7} (intension of S)

= [[in the world of Sherlock Holmes]]^{w7} ([λ w' . a famous detective lives at 221B Baker St. in w'])

- = $[\lambda p_{\langle s, t \rangle}, p(w_9)]$ ($[\lambda w', a famous detective lives at 221B Baker St. in w'])$
- = $[\lambda w']$. a famous detective lives at 221B Baker St. in w'] (w₉)
- = (true iff) a famous detective lives at 221B Baker St. in w_9

From von Fintel & Heim] Exercise 1.3 (page 11)

Keep in mind that we're using the simple version of the intensional semantics, as above.

First, let's give the extension and intension of the two conjuncts:

> Extensions:

[[Holmes is quick]]^w = 1 iff Holmes is quick in w [[Watson is slow]]^w = 1 iff Watson is slow in w

> Intensions:

Intension of *Holmes is quick*: $[\lambda w' . [[Holmes is quick]]^{w'}] = [\lambda w' . Holmes is quick in w']$

Intension of *Watson is slow*: $[\lambda w' . [[Watson is slow]]^{w'}] = [\lambda w' . Watson is slow in w']$

Now let's go on to the computation. The first part is the same in both cases:

[In the world of Sherlock Holmes, Holmes is quick and Watson is slow]]^w

= **[[in the world of Sherlock Holmes]]**^w ($\lambda w'$. [[Holmes is quick and Watson is slow]]^w)

= $[\lambda p_{\langle s,t \rangle}, p(w_9)]$ ($[\lambda w', [[Holmes is quick and Watson is slow]]^{w'}])$

= $[\lambda w' \cdot [[Holmes is quick and Watson is slow]]^{w'}] (w_9)$

= [[Holmes is quick and Watson is slow]]^{w9}

At this point, we have to do the two computations separately:

With extensional *and*: $[[and]]^w = [\lambda u_t \cdot [\lambda v_t \cdot u = v = 1]]$

[[Holmes is quick and Watson is slow]]^{w9} = [[and]]^{w9} ([[Watson is slow]]^{w9}) ([[Holmes is quick]]^{w9})

= $[\lambda u_t \cdot [\lambda v_t \cdot u = v = 1]]$ ([[Watson is slow]]^{w9}) ([[Holmes is quick]]^{w9})

= $[\lambda v_t . [[Watson is slow]]^{w9} = v = 1]$ ([[Holmes is quick]]^{w9})

- = (true iff) [[Watson is slow]]^{w9} = [[Holmes is quick]]^{w9} = 1]
- = (true iff) Watson is slow in w_9 and Holmes is quick in w_9
- With intensional and: **[[and]]**^w = [λp_{<s,t>} . [λq_{<s,t>} . p(w) = q(w) = 1]] [[Holmes is quick and Watson is slow]]^{w9} = **[[and]**]^{w9} ([λw' . [[Watson is slow]]^w]) ([λw' . [[Holmes is quick]]^w]) = [λp_{<s,t>} . [λq_{<s,t>} . p(w₉) = q(w₉) = 1]] ([λw' . [[Watson is slow]]^w]) ([λw' . [[Holmes is quick]]^w])
 - = $[\lambda q_{\langle s,t \rangle}$. $[\lambda w' \cdot [[Watson is slow]]^{w'}](w_9) = q(w_9) = 1]$ ($[\lambda w' \cdot [[Holmes is quick]]^{w'}]$)
 - = $[\lambda q_{<s,t>}$. [[Watson is slow]]^{w9} = q(w₉) = 1] ($[\lambda w' . [[Holmes is quick]]^w])$
 - = (true iff) [[Watson is slow]]^{w9} = $[\lambda w' \cdot [[Holmes is quick]]^w] (w_9) = 1]$
 - = (true iff) [[Watson is slow]]^{w9} = [[Holmes is quick]]^{w9} = 1
 - = (true iff) Watson is slow in w₉ and Holmes is quick in w₉

From von Fintel & Heim] Exercise 2.1 (page 19)

[Discussed in class – see handout from 2/24/09, pp. 3-4]