24.914
 Geographical variation in the phonetics and phonology of English
 - Transcription

Readings and assignments

- Reading: Labov et al (1997) 'A National Map of the Regional Dialects of American English’
- Assignment: Phonetic transcription exercise, due session 4

Geographical variation

- Languages are spoken differently in different geographical areas.
- Some examples
- We will survey variation in phonetics and phonology across dialects of English in the USA (and the UK).
- We will then explore explanations for properties of the observed patterns of variation based on theories about how sound change operates.
- First we need ways to describe and analyze the varieties that we find.
$>$ Phonetic transcription
$>$ Phonological analysis

Phonetic transcription

- A phonetic transcription system provides a useful means of recording speech.
- We will be using the International Phonetic Alphabet (IPA)
$>$ 'The IPA is intended to be a set of symbols for representing all the possible sounds of the world's languages.' IPA (1990)
$>$ 'There should be a separate letter for each distinctive sound' Aims and Principles (1949)

Describing speech sounds

- In phonetic transcription and in phonological analysis, speech sounds are commonly described in terms of the way in which they are produced.
- Later we will see how to characterize some sounds in terms of measured acoustic properties.

Speech production system

- The speech production system comprises the lungs and the vocal tract.

Vowels

- Vowel sounds are usually voiced.
- They are all produced without any very narrow constriction of the vocal tract (not narrow enough to generate turbulent air flow).
- Vowel qualities are differentiated by the shape of the vocal tract, resulting from different positions of tongue and lips.

© UCLA Center for Digital Humanities. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/ help/faq-fair-use/. -

Describing vowels

Four parameters:

- Height (high-mid-low)
- Backness (front-central-back)
- Lip rounding (rounded-unrounded)
- Tense-lax
- We will see that judgments of height and backness generally reflect acoustic properties of vowels more directly than tongue body position

Vowel height

$$
\begin{array}{lll}
{[\mathrm{i}]} & \text { heed } & \text { high } \\
{[\mathrm{I}]} & \text { hid } & \text { high (lax) } \\
{[\varepsilon]} & \text { head } & \text { mid } \\
{[\mathfrak{~}]} & \text { had } & \text { low }
\end{array}
$$

[u] who'd high
[u] hood high (lax)
[a] hod low

Vowel height

Vowel rounding

$\left.\begin{array}{ll}{[\mathrm{i}]} & \text { heed } \\ {[\mathrm{I}]} & \text { hid } \\ {[\varepsilon]} & \text { head } \\ {[æ]} & \text { had } \\ {[\mathrm{I}]} & \text { hut }\end{array}\right]$ unrounded

American English vowels

- Some American English vowels

	rounded			
		Front	Central	Back
High	tense	i		u lax
I		u		
Mid	higher lower	eI		ou
	ε	Λ	0	
Low		$æ$		a

Diphthongs:
[ar] 'eye', [av] 'how', [כт] 'boy’
[i] heat
[I] hit
[u] hoot
[u] hood
[eI] hate
[ε] head
[^] hut
[ov] hoe
[ว] ought
[æ] hat
[a] odd
Unstressed: [ə] ‘attack’

Diphthongs

- Diphthongs are vowels that change quality during the duration of the vowel.
- Transcribed with vowel symbols indicating starting and ending qualities, e.g. [ar] hide.
- Some sources use glides to transcribe the offsets of English diphthongs [aj] ([ar]), [ej] ([er]), [ow] ([ou])
- [j] is similar to [i] and [w] is similar to [u]
- In the vowels [er] (rate) [ou] (wrote), the nuclei are mid [e, o], while the offglides are high.
- The monophthongs $[\mathrm{e}, \mathrm{o}]$ are found in many languages (e.g. Spanish, Italian, Scottish English, Minnesota Eng.).

Tense vs. Lax Vowels

- Tense and lax vowels in English are distinguished more on phonological rather than phonetic grounds.
- Lax vowels cannot occur at the end of a word while tense vowels can.
- [si] see, [ser] say, [su] Sue, [sou] so, [sa] saw
$-*[\mathrm{si}], *[\mathrm{~s} \varepsilon], *[\mathrm{su}], *[\mathrm{sæ}]$
- By this criterion [כ] is not lax since it can occur at the end of words: [so] saw. But many feature systems analyze [ov]/[כ] as a tense-lax pair.
- Phonetically, tense vowels are longer than most of the lax vowels, and in tense-lax pairs like [i-ז], [u-v], [ei- ε] the tense vowel is higher and more peripheral on the frontback dimension.
- [e, o] are higher (or close) mid and [$\varepsilon, \nu]$ are lower (or open) mid.

Schwa [ə]

- [ə] is usually said to be a mid central unrounded vowel, but that's not really how this symbols is used in the transcription of English.
- It is mainly used to transcribe short, unstressed vowels of contextually variable quality
- about [əbawt], pretend [pıətend], panda [pændə]
- [Λ] is a lax mid central unrounded vowel
- but [bıt], sun [s $\wedge \mathrm{n}]$
- The vowel at the end of words like panda and comma can be similar to [Λ], although conventionally transcribed with [2], but in most other contexts [$ə$] is not only shorter than [\wedge], but often much higher.
- abut [әb $\wedge t]$

More vowels

- The IPA distinguishes the following vowel symbols:

Notes:

- Close = high, Open = low
- The IPA says [a] is a low front vowel - we will call it central
- [Λ] is officially a back vowel, but in transcription of English, it is conventionally used to transcribe a lower-mid central vowel (hut, bud)

More vowels

- In English, only back vowels are rounded [u, u, ou, o .
- It is common across languages for front vowels to be unrounded and for non-low back vowels to be rounded.
- E.g. Spanish

i	u
e	0

- But some languages have front rounded vowels as well
- High front rounded [y], e.g. French une [yn]
- Mid front rounded [\varnothing], e.g. French bleu [blø]
- Non-low back unrounded vowels occur as well, e.g. the 'u' of Tokyo Japanese is high back unrounded [u]

Geographical distribution of the cot-caught merger.

The Merger of/o/ and /oh/
Contrast in production of $/ \mathrm{o} / \mathrm{and} / \mathrm{oh} /$ before $/ \mathrm{t} / \mathrm{in}$ COT vs. CAUGHT.

Figure by MIT OpenCourseWare. Adapted from the Linguistics Laboratory of the University of Pennsylvania.

Consonants

- Consonants differ from vowels in that they are produced with narrower constrictions of the vocal tract.
- Parameters for describing consonants:
- Voicing: voiced or voiceless
- Place of articulation: where the constriction is formed, and with what articulator.
- Manner of articulation: how narrow the constriction is.
- Oral/Nasal: whether the velum is lowered.
- Lateral(/Central)

Place of articulation

- Specified in terms of the articulator that forms the consonant constriction and the location of the constriction.

English consonants

	bilabial	labio- dental	dental	alveolar	alveo- palatal	palatal	velar	glottal
stop	p b			t d			kg	
nasal	m			n			y	
fricative		fv	t d	s z	$\int 3$			h
affricate					tf d 3			
liquid - lateral				t				
glide	w					j		

- It's not clear where to put [1] and [w] on the chart since [w] has two constrictions (labial and velar), and [μ] has various pronunciations.

More consonants

	Bilabial	Labiodental	Dental	Alveolar	Postalveolar	Retroflex	Palatal	Velar	Uvular	Pharyngeal	Glotal
Plosive	p b			t d		t d	C f	k g	q G		?
Nasal	m	I]		n		η	J1	$1]$	N		
Trill	B			r					R		
Tap or Flap		V		I		[
Fricative	$\phi \beta$	f V	θ ठ	S Z	$\int 3$	S Z	ç j	X 8	χ в	¢ S	h 1
Lateral fricative				13							
Approximant		v		I		I	j	U			
Lateral approximant				I		l	Λ	L			

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible.

- [r] tap (a.k.a flap) - butter, metal, medal
© 2015 International Phonetic Association. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
- [?] glottal stop

Geographical variation in English

- English is spoken differently in different parts of the USA, UK, etc.
- We will survey variation in phonetics and phonology across dialects of English in the USA (and the UK).
- We will then explore explanations for properties of the observed patterns of variation based on theories about how sound change operates.

Geographical variation in English

- We can observe geographical variation in all aspects of languages, but for now we are focusing on phonetics and phonology.
- Accent variation
- Cf. Lexical variation
© Harvard Dialect Survey. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

- Syntactic variation, e.g. ‘The car needs repaired', ‘The house needs painted'

Geographical variation in English

- Dialects of English can differ in all aspects of phonetics and phonology
- Contrastive sounds ('phonemes')
- How many
- Basic phonetic realization
- Allophonic variation in the realization of these sounds.
- Including phonetic details such as patterns of coarticulation.
- Restrictions on the distribution of contrasts
- E.g. positional neutralization of contrasts

Variation in inventory of vowel contrasts

- Accents of English differ in the number of contrasting low/lower-mid back vowels.
- Most British accents contrasts three lower back vowels, e.g. Standard Southern British English (a.k.a. Received Pronunciation) / $\mathrm{a}, \mathrm{o}, \mathrm{b} /$
f. [k $\left.{ }^{\text {h }} \mathrm{tt}\right]$ 'cart', [$\left.\mathrm{k}^{\mathrm{h}} \mathrm{vt}\right]$ 'caught', [$\left.\mathrm{k}^{\mathrm{h}} \mathrm{Dt}\right]$ 'cot' g.[dan] 'darn', [don] ‘dawn', [dmn] 'Don'
- Some N. American accents contrast two lower back vowels, e.g. Inland North (Detroit, Chicago etc).
- [k' kt$] /\left[\mathrm{k}^{\mathrm{h}} a t\right]$ 'cot', [k$\left.{ }^{\mathrm{h}} \mathrm{t} \mathrm{t}\right]$ 'caught'
- [dan]/[dan] ‘Don’, [don] ‘dawn’
- Buffalo Chicago Kenosha
${ }_{27}$ - Also a difference in the phonetic realization [a] vs. [a]

Variation in inventory of vowel contrasts

- Others have only one lower back vowel, e.g. the West.
- [k'ht] 'cot, caught', [dan] ‘Don, dawn’
- Los Angeles ‘awful'
- Los Angeles 'thought'

Image by MIT OCW.
Adapted from the Linguistics Laboratory of the University of Pennsylvania.

Variation in inventory of vowel contrasts

- What are the differences between the grammars of these varieties of English?
Quick review of phonology:
- Phonological grammars map all logically possible input representations onto well-formed output representations.
- Accounts for phonotactic restrictions
- e.g. if phonology always maps $/ \mathrm{p} / \rightarrow$ [a] (and doesn't map any other sound onto [D$]$), then words containing [D$]$ are ill-formed.
- Accounts for alternations - the same morpheme can be mapped onto different pronunciations in different contexts.
- E.g. /bet/ \rightarrow [bet], /bet-in/ \rightarrow [berip]
- The mapping from input to output is specified by a ranked set of constraints (Optimality Theory)

Variation in inventory of vowel contrasts

- The mapping from input to output is specified by a ranked set of constraints (Optimality Theory)
- The output for a given input is the representation that best satisfies the set of constraints.
- There are two basic types of constraints:
- Markedness constraints - penalize dispreferred output configurations
- E.g. *[+low, +round] (violated by [p])
- Correspondence constraints (a.k.a. faithfulness constraints) - require the output to be similar to the input (ideally identical).
- E.g. IDENT(round) - corresponding input and output segments must have the same [round] specifications.

Variation in inventory of vowel contrasts

- Conflict between constraints is resolved by reference to the constraint ranking: the higher-ranked constraint prevails.
- E.g. *[+low, +round] >> IDENT(round)

$/ \mathrm{k}^{\mathrm{h}} \mathrm{pt} /$	*[+low,+round]	IDENT(round)
$\mathrm{k}^{\mathrm{h}} \mathrm{dt}$	*!	
$\mathrm{k}^{\mathrm{h}} \mathrm{at}$		*

	$\mathrm{k}^{\mathrm{h}} \mathrm{at} /$		$*[+$ low,+round $]$
a	IDENT(round)		
	$\mathrm{k}^{\mathrm{h}} \mathrm{pt}$	$*!$	
b.	$\mathrm{k}^{\mathrm{h}} \mathrm{at}$		

- No contrast between [p] and [a]
- in general only [a] occurs.

Variation in inventory of vowel contrasts

- In general, a feature is contrastive in a context if faithfulness to that feature outranks all markedness constraints against a value of that feature occurring in that context.
- E.g. rounding contrast among low vowels [a, p], as in RP English:
IDENT(round) >> *[+low, +round]

/k $\mathrm{k}^{\mathrm{p} t /}$	IDENT(round)	*[+low,+round]
($\mathrm{k}^{\mathrm{h}} \mathrm{pt}$		*
$\mathrm{k}^{\mathrm{h}} \mathrm{at}$	*!	

$/ \mathrm{k}^{\mathrm{h}} \mathrm{at} /$	IDENT(round)	*[+low,+round]
$\mathrm{k}^{\mathrm{h}} \mathrm{pt}$	*!	*
$\leftrightarrow \mathrm{k}^{\mathrm{h}} \mathrm{at}$		

- No contrast between [p] and [a], only [a] occurs:
*[+low, +round] >> IDENT(round)

Variation in inventory of vowel contrasts

- Identifying the constraints that regulate vowel inventories is an interesting (and hard) problem (e.g. Flemming 2004).
- For now, we will adopt simplistic markedness constraints:
- *[+low, +round] - *p, ce
- *[-high, -tense, +round] - * ${ }^{2}$, D
- Note we are using [tense] to distinguish [o] from [0] in spite of the conflict with the use of [-tense] to group the vowels that cannot occur word-finally in English.
- Constraint rankings for RP, Inland North and West?

Variation in the phonetic realization of equivalent

vowels

- [a] vs. [a] in words like cot, Don, hot, lot, father
- [u] vs. [t] - e.g. Detroit AAVE vs. S. California
- [ov] vs. [əъ] - e.g. Detroit AAVE vs. SSBrE
- /ov/ 'fronting' is also a characteristic of the Philadelphia, Baltimore and some Southern accents.
- Phonological analysis?

Variation in the distribution of contrasts

- In many Southern and African-American Vernacular English (AAVE) accents, the contrast between $/ \mathrm{I} /$ and $/ \varepsilon /$ is neutralized to [I] before nasals.
- 'pin-pen merger'

pit	$\mathrm{p}^{\mathrm{h}} \mathrm{It}$	pin	$\mathrm{p}^{\mathrm{h}} \mathrm{In}$	him	him
pet	$\mathrm{p}^{\mathrm{h}} \varepsilon \mathrm{t}$	pen	$\mathrm{p}^{\mathrm{h}} \mathrm{In}$	hem	him
Rick	IIk	many	'mıni	length	link θ
wreck	$\mathrm{I} \varepsilon \mathrm{k}$	mini	'mıni		

Pin-pen merger

- Geographical distribution of the pin-pen merger

Figure by MIT OpenCourseWare. Adapted from the Linguistics Laboratory of the University of Pennsylvania.

Pin-pen merger

General recipe for phonological analysis of contextual neutralization:

- Context-sensitive markedness >> 'Faith' >> Context-free markedness
- A simplistic analysis of the pin-pen merger:
- *\&[+nasal] >> IDENT(high) >> * ε
- Contrast between $[\mathrm{I}, \varepsilon]$ before non-nasals:
a.

$/ \mathrm{p}^{\mathrm{h}} \mathrm{It} /$	$* \varepsilon[+$ nasal $]$	IDENT(high)	$* \varepsilon$
$\mathrm{p}^{\mathrm{h}} \mathrm{It}$			$*$
$\mathrm{p}^{\mathrm{h}} \varepsilon \mathrm{t}$		$*!$	

a.

$/ \mathrm{p}^{\mathrm{h}} \varepsilon \mathrm{t} / \mathrm{F}$	$* \varepsilon[+\mathrm{naSal}]$	IDENT(high)	$* \varepsilon$
$\mathrm{p}^{\mathrm{h}} \mathrm{It}$		$*!$	
$\mathrm{p}^{\mathrm{h}} \varepsilon \mathrm{t}$			$*$

Pin-pen merger

- A simplistic analysis of the pin-pen merger:
- *\&[+nasal] >> IDENT(high) >> * ε
- Neutralization of $[\mathrm{I}, \varepsilon]$ before nasals:
a.

$/ \mathrm{p}^{\mathrm{h}} \mathrm{In} /$	$* \varepsilon[+$ nasal $]$	IDENT(high)	$* \varepsilon$
$\mathrm{p}^{\mathrm{h}} \mathrm{In}$		$*$	$*$
$\mathrm{p}^{\mathrm{h}} \varepsilon \mathrm{n}$	$*!$		$*$

a.

$/ \mathrm{p}^{\mathrm{h}} \varepsilon \mathrm{n} /$	$* \varepsilon[+$ nasal $]$	IDENT(high)	$* \varepsilon$	
$\mathrm{p}^{\mathrm{h}} \mathrm{In}$				
$\mathrm{p}^{\mathrm{h}} \varepsilon \mathrm{n}$	$*!$	$*$	$*$	

Patterns of distribution

- So far we have considered three patterns of distribution of a pair of sounds (or two sets of sounds):

1. Contrast in all (relevant) contexts

- e.g. RP [a] vs. [b]

2. Positional neutralization - the sounds contrast in some contexts, but only one appears in other contexts.

- e.g. pin-pen neutralization

3. No contrast in any context - only one sound appears.

- e.g. US [a], *[p]
- There is a variant of (3): No contrast, allophonic variation
- One sounds appears in one context, the other appears elsewhere.
- E.g. nasalized vowels before nasals, oral vowels elsewhere

Allophonic variation

- Allophonic variation can be derived from the following ranking schema:
- Context-sensitive markedness >> Context-free markedness >> 'Faith'
- *ORALV-N >> *NASALV >> IDENT(nasal)
- Only nasalized vowels preceding a nasal consonant
a.

$/ \mathrm{p}^{\mathrm{h}} \varepsilon \mathrm{n} /$	*ORALV-N	*NASALV	IDENT(nasal)
$\mathrm{p}^{\mathrm{h}} \varepsilon \mathrm{n}$	$*!$		
$\mathrm{p}^{\mathrm{h}} \tilde{\varepsilon} \mathrm{n}$		$*$	$*$

a.

$/ \mathrm{p}^{\mathrm{h}} \tilde{\varepsilon} \mathrm{n} /$	*ORALV-N	*NASALV	IDENT(nasal)
$\mathrm{p}^{\mathrm{h}} \varepsilon \mathrm{n}$	$*!$		$*$
$\mathrm{p}^{\mathrm{h}} \tilde{\varepsilon} \mathrm{n}$		$*$	

Allophonic variation

- Allophonic variation can be derived from the following ranking schema:
- Context-sensitive markedness >> Context-free markedness >> 'Faith'
- *ORALV-N >> *NASALV >> IDENT(nasal)
- Only oral vowels elsewhere
a.

$/ \mathrm{p}^{\mathrm{h}} \varepsilon \mathrm{ct} /$	*OR ALV-N	*NASALV	IDENT(nasal)
$\mathrm{p}^{\mathrm{h}} \varepsilon \mathrm{\varepsilon}$			
$\mathrm{p}^{\mathrm{h}} \tilde{\varepsilon} \mathrm{t}$		$*!$	$*$

a.

$/ \mathrm{p}^{\mathrm{h}} \tilde{\mathrm{c}} \mathrm{t} /$	*ORALV-N	*NASALV	IDENT(nasal)
$\mathrm{p}^{\mathrm{h}} \varepsilon \mathrm{\varepsilon}$			$*$
$\mathrm{p}^{\mathrm{h}} \tilde{\varepsilon} \mathrm{t}$		$*!$	

Patterns of distribution

- These four patterns of distribution follow can all be derived from the possible rankings of three types of constraints:
- Ident(F) >> MC-SEnsitive >> MC-Free \mid Contrast in all contexts
- Ident(F) >> MC-Free >> MC-SENSITIVE
- MC-Free >> Ident(F) >> MC-SENSITIVE
- MC-FREE >> MC-SENSITIVE >> IdENT(F)
- MC-SENSITIVE >> MC-Free >> Ident(F)
- MC-SEnsitive >> Ident(F) >> MC-FReE

No contrast

- only one sound appears

No contrast, allophonic variation

Contextual neutralization

MIT OpenCourseWare
https://ocw.mit.edu/
24.914 Language Variation and Change

Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

