### 24.914 Language Variation and Change The role of the listener in sound change

1

### Readings and assignments

- Lexical Diffusion short paper due session 13
- Think about/talk to me about a final paper topic
- Read Pierrehumbert (2000) 'Exemplar dynamics'

### Ohala's model: undoing contextual effects

- Ohala (1981) proposes an account of the origins of sound changes that gives a central role to the listener
- Contextual effects of one segment on another are claimed to be largely mechanical, and unintended by the speaker.
  - Coarticulation, e.g. raising of F2 in back vowels due to an adjacent coronal.
  - Effects of obstruent voicing on f0, etc.
- Listeners factor out these 'distortions' of the speaker's intentions in the process of speech perception.



Source: Ohala, John. "J. 1981. The listener as a source of sound change." Papers from the Parasession on Language and Behavior: 178-203.

## 'Sound change from failure to apply reconstructive rules'

• Note that Ohala does not claim that context must be lost at the same time – there may be other reasons for the failure to apply reconstructive rules.



Courtesy of the Chicago Linguistic Society. Used with permission. Source: Ohala, John. "J. 1981. The listener as a source of sound change." Papers from the Parasession on Language and Behavior: 178-203.

### Example: Lhasa Tibetan

|    | <u>8<sup>th</sup> Century Tibetan</u> | > | <u>Lhasa Tibetan</u> |            |
|----|---------------------------------------|---|----------------------|------------|
| a. | lus                                   |   | ly:                  | "body"     |
|    | Jul                                   |   | JY                   | "country"  |
|    | bod                                   |   | phø:                 | "Tibet"    |
|    | spos                                  |   | pø:                  | "incense"  |
|    | smn                                   |   | mẽː                  | "medicine" |
|    | skad                                  |   | qẽ:                  | "language" |
| b. | goŋ                                   |   | qhõː                 | "price"    |
|    | gjag                                  |   | ja:                  | "yak"      |
|    | nub                                   |   | nuː                  | "west"     |

#### • Other examples:

- Development of nasalized vowels (above).
- Tonogenesis/tone split accompanied by loss of stop voicing contrast (e.g. Chinese dialects, Kammu).

5

### Example: Lhasa Tibetan

- Coronals have coarticulatory fronting effects on adjacent vowels.
- E.g. in English
- Partial assimilation of vowels to the tongue body position of adjacent consonants.
  - The tongue body is generally relatively fronted in anterior coronal stops (alveolar, dental).
  - facilitates positioning the tongue tip at the teeth/alveolar ridge,



### Example: Lhasa Tibetan

- Coronals have coarticulatory fronting effects on adjacent vowels.
- E.g. in English



## Hillenbrand, Clark & Nearey 2001

© The Acoustical Society of America. All rights reserved. This content is excluded from our Creative 7 Commons license. For more information, see <a href="http://ocw.mit.edu/help/faq-fair-use/">http://ocw.mit.edu/help/faq-fair-use/</a>. Source: Hillenbrand, James M., Michael J. Clark, and Terrance M. Nearey. "Effects of consonant environment on vowel formant patterns." The Journal of the Acoustical Society of America 109, no. 2 (2001): 748-763.

### Example: tonogenesis in Kammu

| Gloss                 | E. Kammu | W. Kammu<br>Tone 1 | W. Kammu<br>Tone 2  | W. Kammu<br>Register |
|-----------------------|----------|--------------------|---------------------|----------------------|
| 'rice wine'           | bu:c     | pù:c               | p <sup>h</sup> ù:c  | pu:c                 |
| 'to take off clothes' | pu:c     | pû:c               | pú:c                | pû:c                 |
| 'to cut down a tree'  | bok      | pòk                | p <sup>h</sup> òk   | pok                  |
| 'to take a bite'      | pok      | pók                | pók                 | pók                  |
| 'to chew'             | bu:m     | pù:m               | p <sup>h</sup> ù:m  | pu:m                 |
| 'to fart'             | pu:m     | pû:m               | pú:m                | pû:m                 |
| 'stone'               | gla:ŋ    | klà:ŋ              | k <sup>h</sup> là:ŋ | kla:ŋ                |
| 'eagle'               | kla:ŋ    | klâ:ŋ              | klá:ŋ               | klâ:ŋ                |
| 'to weigh'            | jan      | càn                | c <sup>h</sup> àŋ   | cạn                  |
| 'astringent'          | can      | cân                | cáŋ                 | cân                  |

© Blackwell Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

- Data from Suwilai (2003) via Kingston (2011).
- <sup>8</sup> NB laryngeal contrast is retained in W. Kammu dialect 2.

#### F<sub>0</sub> and stop voicing



FIG. 2. Average F0 from voicing onset to the fifth glottal period for voiceless aspirated and voiced stops as a function of linguistic context and place of articulation.

• F<sub>0</sub> is higher after voiceless obstruents than after voiced obstruents (other things being equal) <sup>©</sup> The Acoustical Society of America, Al

© The Acoustical Society of America. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Ohde, Ralph N. "Fundamental frequency as an acoustic correlate of stop consonant voicing." The Journal of the Acoustical Society of America 75, no. 1 (1984): 224-230.

### Automaticity of coarticulation?

- The magnitude of coarticulatory fronting of vowels due to coronals is language-specific (Flemming 2001, 2008).
  - Undershoot = difference in F2 of [u] in a neutral context, e.g [hu] and in a context between anterior coronal stops [tut].



How does it change Ohala's picture if coarticulation is
 <sup>10</sup> intentional, and derives from the grammar of a language?

# Perceptually-based change without loss of context: Velar palatalization

- Palatalization of velars to palato-alveolar affricates is a common sound change.
- It is not obviously assimilatory C changes from dorsal to coronal under the influence of a dorsal (front) vowel.

| E.g. Slavic 1st palatalization: |        |          |               |                  |  |
|---------------------------------|--------|----------|---------------|------------------|--|
| Pre-proto-Slavic                | OCS    |          |               |                  |  |
| *wilk-e                         | vľit∫e | cf.      | vlikŭ         | 'wolf'           |  |
| *pla:k-j-o:-m                   | plat∫õ | cf.      | plakati 'cry' |                  |  |
| *mog-e                          | тозе   | cf.      | mogoxŭ        | 'was able'       |  |
| *lug-j-o:-m                     | lŭʒõ   | cf.      | lŭgati        | 'lie'            |  |
| Old Chinese                     | Middle | e Chines | se            |                  |  |
| *kje                            | tçje   |          |               | 'branch'         |  |
| *k <sup>h</sup> jet             | tçʰjet |          |               | 'to trail, drag' |  |
| *gjip                           | dzjip  |          |               | 'ten'            |  |
| 11                              |        |          |               |                  |  |

# Perceptually-based change without loss of context: Velar palatalization

- Ohala (1992) argues that the change is based on perceptual similarity between fronted velars and palato-alveolars (also Guion 1998).
- The affrication of [tS] has its first major spectral peak at 2-3 kHz – close to F2/F3 of [i].
- The burst of [k] in [ki] has its main spectral peak at around the same frequency because the peak of a [k] burst generally tracks F2 of the following vowel because it assimilates in place to following (non-low) vowels.
- Onset of F2 is high after both consonants in [ki, tSi].



## Perceptually-based change with and without loss of context

- Misinterpretation of contextual effects with loss of context makes the failure of reconstruction understandable.
- But why is context misperceived? If it is due to an error of production or perception, or accidental noise, is that sufficient to generate a sound change?
- Occasional perceptual errors seem unlikely to translate into novel productions because they will be overwhelmed by correct perceptions.
  - Systematic/frequent misperception is required to account for a regular sound change.
  - Paul: 'A single inaccuracy of the ear cannot possibly have any lasting results for the history of language. If I do not accurately catch a word...but I guess his meaning from the context...then I supply the word in question according to the memory-picture which I have in my mind. If the connexion is not sufficient to explain clearly the meaning, it may be that I shall supply a wrong meaning, or I may supply nothing at all...But how I should come to think that I have heard a word of a different sound, and still set this word in the place of the one I understand, is to me incomprehensible' (p.21)
- Why would misinterpretation of contextual effects occur <sup>14</sup> systematically?

### Sound change via hyper-correction

• Ohala argues that dissimilation results from erroneous over-application of reconstructive processes.



| <u>Slavic</u><br>mõgut∫ājsij<br>stoj-ā- | > >                            | mõgu<br>stojā-             | t∫āj∫iji                          | 'softes<br>'stand | st'   |
|-----------------------------------------|--------------------------------|----------------------------|-----------------------------------|-------------------|-------|
| <u>Proto-bantu</u><br>*-bua<br>*-mu-    | <u>Pre-Sl</u><br>*-bwa<br>kumw | <u>hona</u><br>1<br>7akumy | <u>Shona</u><br>-bγa<br>aʻto drin | nk'               | 'dog' |

### Sound change via hyper-correction

• Non-local dissimilation

| E.g. IE > Sanskrit                                      | *bhendh                                           | > bandfi-     | 'bind'     |
|---------------------------------------------------------|---------------------------------------------------|---------------|------------|
| Proto-Quechumaran > Q                                   | Quechua *t                                        | 'ant'a > t'an | ta 'bread' |
| Latin: /nav-alis/ n<br>/popul-alis/ p<br>/milit-alis/ n | avalis<br>opula <u>r</u> is<br>nilita <u>r</u> is |               |            |

- Are the required coarticulatory effects attested/strong enough to motivate the required reconstructive processes?
- See Gallagher (2010) for an alternative account for a subset of these cases.

#### Gradualness of change

- Does Ohala's model predict that sound change should be gradual?
  - E.g. tonogenesis from loss of laryngeal contrasts

### Gradual tonogenesis in Seoul Korean

- Korean contrasts unaspirated ('lax'), aspirated and tense stops.
  - <u>http://www.phonetics.ucla.edu/appendix/languages/korean/korean.html</u>
- Differentiated by Voice Onset Time and  $F_0$  following the stop.







### Voice Onset Time



Figure © Lingua. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Kang, Yoonjung, and Sungwoo Han. "Tonogenesis in early Contemporary Seoul Korean: A longitudinal case study." Lingua 134 (2013): 62-74.

### Gradual change in the Korean lax-aspirated contrast

- VOT used to be a significant cue to the contrast betweenAP-initial initial lax and aspirated stops in Korean (at least for males).
- In Seoul Korean, the VOT difference is now small and F0 is a significant cue (Kang 2013)
- Speakers recorded in 2003
- VOT difference between aspirated and lax stops differs significantly by gender and YoB.
- No gender\*YoB
  interaction (few speakers born in 1930s – 4 m, 2 f)



### References

- Gallagher, G. (2010). Perceptual distinctness and long-distance laryngeal restrictions. *Phonology* 27: 435-480
- Guion, S. G. (1998). The role of perception in the sound change of velar palatalization. Phonetica, 55, 18–52.
- Kingston, John (2011) Tonogenesis. In M. van Oostendorp, C. J. Ewen, E. Hume, & K.Rice (Eds.), *The Blackwell Companion to Phonology*. Blackwell Publishing.
- Kirby, J. (2010). Cue selection and category restructuring in sound change. PhD diss, U of Chicago.
- Kirby, J. (2013). The role of probabilistic enhancement in phonologization. In A. Yu (ed.), *Origin of Sound Patterns: Approaches to Phonologization*. Oxford: OUP, pp. 228-246

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

#### 24.914 Language Variation and Change Spring 2019

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.