24.914

Language Variation and Change Phonetics and Sound Change

Courtesy of Chicago Linguistic Society. Used with permission. Source: Ohala, John. "J. 1981. The listener as a source of sound change." Papers from the Parasession on Language and Behavior: 178-203.

Phonetics and Sound Change

- Phonetic considerations have long been hypothesized to play a central role in accounting for the nature of sound change.
- The Neogrammarian hypothesis: sound change is exceptionless and purely phonetically conditioned.
 - 'sounds change not words'.
 - Suggests that the mechanisms of sound change involve phonetics, i.e. properties of speech production and perception.
- Recurrence of similar sound changes across languages and across time.
 - The properties of speech production and perception are basically the same for all speakers at all times.

Initiation vs. Propagation

- What are the mechanisms of sound change? How do they involve phonetics?
- Phonetic considerations are assumed to influence the initiation of a sound change, e.g. in the speech of a single speaker.
- Whether the sound change spreads through a population depends on social factors etc.

The role of the speaker in sound change

• 'Ease of articulation' has commonly been regarded as the basis for sound changes such as lenitions and assimilations.

<u>Old Italian</u>	<u>Italian</u>	
okto	otto	'eight'
nokte	notte	'night'
lakte	latte	'milk'
Latin	Portuguese	French
bon(um)	bõ	bõ 'good'
un(um)	ũ	œ 'one'

The role of the listener in sound change

• However there are many sound changes that cannot easily be understood in terms of reduction of effort, e.g. fortition.

Latin	French	
jumentum	[3]ument	'draft animal'
jocus	[3]eu	'game'
junius	[3]uin	'June'

• Ohala (1981) proposes an account of the origins of sound changes that gives a central role to the listener

- Regardless of the precise mechanism involved, the relevance of speech perception is indicated by frequent changes involving articulatorily dissimilar, but perceptually similar sounds.
- $f > \theta$

<u>RP English</u>	<u>Cockney</u>	
υτθ	f.u	'through'
θin	fın	'thin'

• This change is acoustically gradual, but articulatorily abrupt

• Labialized stops > labials

<u>Early Latin</u>	Classical Latin		
dwellom	bellum	'war'	
dwonos	bonus	'good'	
dwis	bis	'twice'	

Classical L		
akwa	apa	'water'
liŋgwa	limba	'tongue'
ekwa	iapə	'mare'

• Labialized stops > labials

© Stony Brook University. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Suh, Yunju. "Phonological and Phonetic Asymmetries of Cw Combinations." PhD diss., Stony Brook University, 2009.

• NB similarity between labialized stops and labials depends on exactly how [Cw/C^w] are realized

© Stony Brook University. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Suh, Yunju. "Phonological and Phonetic Asymmetries of Cw Combinations." PhD diss., Stony Brook University, 2009.

• Palatalized labials > Coronals

Old Czech	<u>kitomyšl Czech</u>	
p ^j ekn ^j e	tekn ^j e	'nicely'
b ^j ezeti	dezet	'run'
m ^j esto	nesto	'town'

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

- Palatalization was lost in all contexts, but without change in primary place of other palatalized consonants.

Ohala's model: undoing contextual effects

- Contextual effects of one segment on another are claimed to be largely mechanical, and unintended by the speaker.
 - Coarticulation, e.g. raising of F2 in back vowels due to an adjacent coronal.
 - Effects of obstruent voicing on f0, etc.
- Listener's factor out these 'distortions' of the speaker's intentions in the process of speech perception.

Courtesy of The Chicago Languistic Society. Used with permission. Source: Ohala, John. "J. 1981. The listener as a source of sound change." Papers from the Parasession on Language and Behavior: 178-203.

'Sound change from failure to apply reconstructive rules'

• Note that Ohala does not claim that context must be lost at the same time – there may be other reasons for the failure to apply reconstructive rules.

Courtesy of The Chicago Languistic Society. Used with permission. Source: Ohala, John. "J. 1981. The listener as a source of sound change." Papers from the Parasession on Language and Behavior: 178-203.

Example: Lhasa Tibetan

	8th Century Tibetan	>	<u>Lhasa Tibetan</u>	
a.	lus		ly:	'body'
	jul		jy:	'country'
	bod		phø:	'Tibet'
	spos		pø:	'incense'
	sman		mẽ:	'medicine'
	skad		qe:	'language'
b.	goŋ		qhõ:	'price'
	gjag		ja:	'yak'
	nub		nu:	'west'

- Other examples:
 - Development of nasalized vowels (above).
 - Tonogenesis/tone split accompanied by loss of stop voicing contrast (e.g. Chinese dialects, Kammu).

Example: Lhasa Tibetan

- Coronals have coarticulatory fronting effects on adjacent vowels.
- E.g. in English

© The Acoustical Society of America. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Hillenbrand, James M., Michael J. Clark, and Terrance M. Nearey. "Effects of consonant environment on vowel formant patterns." The Journal of the Acoustical Society of America 109, no. 2 (2001): 748-763.

Example: tonogenesis in Kammu

Gloss	E. Kammu	W. Kammu Tone 1	W. Kammu Tone 2	W. Kammu Register
'rice wine'	bu:c	pù:c	p ^h ù:c	pu:c
'to take off clothes'	pu:c	pû:c	pú:c	pû:c
'to cut down a tree'	bok	pòk	p ^h òk	pok
'to take a bite'	pok	pók	pók	pók
'to chew'	bu:m	pù:m	p ^h ù:m	pu:m
'to fart'	pu:m	pû:m	pú:m	pû:m
'stone'	gla:ŋ	klà:ŋ	k ^h là:ŋ	kla:ŋ
'eagle'	kla:ŋ	klâ:ŋ	klá:ŋ	klâ:ŋ
'to weigh'	yan	càŋ	c ^h àŋ	cạn
'astringent'	can	câŋ	cáŋ	cân

© Blackwell Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

- Data from Suwilai (2003) via Kingston (2011).
- NB laryngeal contrast is retained in W. Kammu dialect 2.

F₀ and stop voicing

© The Acoustical Society of America. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Ohde, Ralph N. "Fundamental frequency as an acoustic correlate of stop consonant voicing." The Journal of the Acoustical Society of America 75, no. 1 (1984): 224-230.

• F_0 is higher after voiceless obstruents than after voiced obstruents (other things being equal)

Compensation for coarticulation

- The process that Ohala proposes is similar to compensation for coarticulation. How does it differ?
- Are the differences crucial to Ohala's analysis?
- What would be the expected result of a failure to compensate for coarticulation?

s-∫, liprounding

© Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Mann, Virginia A., and Bruno H. Repp. "Influence of vocalic context on perception of the [*f*]-[s] distinction." Attention, Perception, & Psychophysics 28, no. 3 (1980): 213-228.

i-u, fronting vs. backing contexts

© The Acoustical Society of America. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Harrington, Jonathan, Felicitas Kleber, and Ulrich Reubold. "Compensation for coarticulation, /u/-fronting, and sound change in standard southern British: An acoustic and perceptual study." The Journal of the Acoustical Society of America 123, no. 5 (2008): 2825-2835.

Automaticity of coarticulation?

- The magnitude of coarticulatory fronting of vowels due to coronals is language-specific (Flemming 2001, 2008).
 - Undershoot = difference in F2 of [u] in a neutral context, e.g [hu] and in a context between anterior coronal stops [tut].

/u/ undershoot between coronals in four languages (in Hz).

© Cambridge University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Flemming, Edward. "Scalar and categorical phenomena in a unified model of phonetics and phonology." Phonology 18, no. 01 (2001): 7-44.

Automaticity of coarticulation?

• As discussed earlier in the course, even where there are inviolable physiological constraints on speech production, those are never sufficient to fully determine coarticulatory patterns.

• How does it change Ohala's picture if coarticulation is intentional, and derives from the grammar of a language?

Perceptually-based change without loss of context: Velar palatalization

- Palatalization of velars to palato-alveolar affricates is a common sound change.
- It is not obviously assimilatory C changes from dorsal to coronal under the influence of a dorsal (front) vowel.

E.g. Slavic 1st palataliza	tion:			
Pre-proto-Slavic	OCS			
*wilk-e	vľit∫e	cf.	vľikŭ	'wolf'
*pla:k-j-o:-m	plat∫õ	cf.	plakati 'cry'	
*mog-e	тозе	cf.	mogoxŭ	'was able'
*lug-j-o:-m	lŭʒõ	cf.	lŭgati	'lie'
<u>Old Chinese</u>	Middle	e Chines	se	
*kje	tçje			'branch'
*k ^h jet	t¢ʰjet			'to trail, drag'
*gjip	dzjip			'ten'

Perceptually-based change without loss of context: Velar palatalization

- Ohala (1992) argues that the change is based on perceptual similarity between fronted velars and palato-alveolars (also Guion 1998).
- The affrication of [tʃ] has its first major spectral peak at 2-3 kHz close to F2/F3 of [i].
- The burst of [k] in [ki] has its main spectral peak at around the same frequency because the peak of a [k] burst generally tracks F2 of the following vowel because it assimilates in place to following (non-low) vowels.
- Onset of F2 is high after both consonants in [ki, tʃi].

Perceptually-based change with and without loss of context

- Misinterpretation of contextual effects with loss of context makes the failure of reconstruction understandable.
- But why is context misperceived? If it is due to an error of production or perception, or accidental noise, is that sufficient to generate a sound change?
- Occasional perceptual errors seem unlikely to translate into novel productions because they will be overwhelmed by correct perceptions.
 - Systematic/frequent misperception is required to account for a regular sound change.
 - Paul: 'A single inaccuracy of the ear cannot possibly have any lasting results for the history of language. If I do not accurately catch a word...but I guess his meaning from the context...then I supply the word in question according to the memorypicture which I have in my mind. If the connexion is not sufficient to explain clearly the meaning, it may be that I shall supply a wrong meaning, or I may supply nothing at all...But how I should come to think that I have heard a word of a different sound, and still set this word in the place of the one I understand, is to me incomprehensible' (p.21)
- Why would misinterpretation of contextual effects occur systematically?

Sound change via hyper-correction

• Ohala argues that dissimilation results from erroneous over-application of reconstructive processes.

Courtesy of The Chicago Languistic Society. Used with permission. Source: Ohala, John. "J. 1981. The listener as a source of sound change." Papers from the Parasession on Language and Behavior: 178-203.

Local dissimilation

<u>Slavıc</u> mõgut∫ājsij stoj-ā-	>	mõgut stojā-	∫āj∫iji	'softest 'stand'	
<u>Proto-bantu</u> *-bua	<u>Pre-Sh</u> *-bwa	ona	<u>Shona</u> -bya		'dog'
*-mu-	kumwa	akumya	a 'to drin	ık'	0

Sound change via hyper-correction

- Non-local dissimilation
- E.g. IE > Sanskrit *bfiendfi > bandfi- 'bind' Proto-Quechumaran > Quechua *t'ant'a > t'anta 'bread'

Latin:	/nav-alis/	navalis
	/popul-alis/	popula <u>r</u> is
	/milit-alis/	milita <u>r</u> is

- Are the required coarticulatory effects attested/strong enough to motivate the required reconstructive processes?
- An alternative account for a subset of these case: Gallagher (2010) it is harder to discriminate plain vs. ejective in the presence of another ejective.
 - Same applies to aspirated stops, and between ejective and aspirated stops.

Gallagher (2010)

a.	Same				
	0 vs. 0	heterorganic	[kapi-kapi]		
		homorganic	[kaki-kaki]		
	1 vs. 1	heterorganic	[k'api-k'api]	or	[kap'i-kap'i]
		homorganic	[k'aki-k'aki]	or	[kak'i-kak'i]
	2 vs. 2	heterorganic	[k'ap'i-k'ap'i]		
b.	Different				
	1 vs. 0	heterorganic	[k'api-kapi]	or	[kap'i-kapi]
		homorganic	[k'aki-kaki]	or	[kak'i-kaki]
	2 vs. 0	heterorganic	[k'ap'i-kapi]		
	2 vs. 1	heterorganic	[k'ap'i-k'api]	or	[k'ap'i-kap'i]

Figure 2

Percentage correct by contrast category, averaged across all subjects.

© Phonology. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>http://ocw.mit.edu/help/faq-fair-use/</u> Source: Gallagher, Gillian. "Perceptual distinctness and long-distance laryngeal restrictions." Phonology 27, no. 3 (2010): 435-480.

An alternative approach to the role of the listener (and speaker)

- Contrasts are distinguished by multiple cues, and by different cues in different contexts.
- Speakers aim to produce distinct speech without excessive effort.
- They can exploit a variety of cues to ensure distinctness of speech.
- 'Exaggeration' of one cue can compensate for articulatorily motivated reduction of another (cf. vowel fronting/coronal reduction, tonogenesis etc).
- A cue may be enhanced in a non-compensatory fashion (i.e. without loss of context) in the service of clarity.
- Predicts gradual shifts in cues and their relative importance over time.
 - Example: Korean lax-aspirated contrast

Cue shifting the in the Korean lax-aspirated contrast

- Korean contrasts unaspirated ('lax'), aspirated and tense stops.
 - http://www.phonetics.ucla.edu/appendix/languages/korean/korean.html
- Differentiated by Voice Onset Time and F_0 following the stop.

Cue shifting the in the Korean lax-aspirated contrast

- VOT used to be a significant cue to the contrast betweenAP-initial initial lax and aspirated stops in Korean (at least for males).
- In Seoul Korean, the VOT difference is now small and F0 is a significant cue (Kang 2013)
- Speakers recorded in 2003
- VOT difference between aspirated and lax stops differs significantly by gender and YoB.
- No gender*YoB interaction (few speakers born in 1930s – 4 m, 2 f)

© Lingua. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ Source: Kang, Yoonjung, and Sungwoo Han. "Tonogenesis in early Contemporary Seoul Korean: A longitudinal case study." Lingua 134 (2013): 62-74.

An alternative approach to the role of the listener (and speaker)

- Gradual shifts in the relative importance of cues is not expected given Ohala's model.
- But why do cue weights sometimes shift in the same direction for an extended time period?
 - Why not random fluctuations?
- Kirby (2010, 2013) explores models based on a similar conception of the phonetic bases of sound change.

New Zealand Vowel Shift

- a > c > i > 3
 - push chain (æ moved first)
- Some changes progress for ~100 years (Hay et al 2014)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

References

- Gallagher, G. (2010). Perceptual distinctness and long-distance laryngeal restrictions. *Phonology* 27: 435-480
- Guion, S. G. (1998). The role of perception in the sound change of velar palatalization. Phonetica, 55, 18–52.
- Kingston, John (2011) Tonogenesis. In M. van Oostendorp, C. J. Ewen, E. Hume, & K.Rice (Eds.), *The Blackwell Companion to Phonology*. Blackwell Publishing.
- Kirby, J. (2010). Cue selection and category restructuring in sound change. PhD diss, U of Chicago.
- Kirby, J. (2013). The role of probabilistic enhancement in phonologization. In A. Yu (ed.), *Origin of Sound Patterns: Approaches to Phonologization*. Oxford: OUP, pp. 228-246

MIT OpenCourseWare https://ocw.mit.edu

24.915 / 24.963 Linguistic Phonetics Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.