Nasal codas in Chinese and English

a study in the framework of the distinctive feature theory

24.921 Class Presentation

Feng-fan Hsieh

Xiaomin Mou

Purpose

- Better understand the acoustic correlates of nasal codas in English and Standard Chinese (SC), within the framework of the distinctive feature theory
- Eventually compare with acoustic correlates of syllableinitial nasals to develop an algorithm to classify the nasal consonant place of articulation
- Incorporate algorithm into a distinctive feature-based speech recognition system

Background

(Stevens, 1989)

- The quantal nature of speech
 - a critical factor in shaping the inventory of phonological features used to signal distinctions in language
 - a basis for the distinctive feature theory

Background Cont.

Feature values for nasal consonants in English

24.921 Class Presentation

Motivation

- Enhancing gestures
 - enhance the perceptual contrast defined by the distinctive feature
 - may be language dependent because the inventory of features and contrasts is language-dependent
- SC official language of China, based on the Beijing dialect
 - the only possible coda is the nasal
 - no competition for perceptual contrast
 - enhancing gestures may be different
- Examine differences in nasal codas in English and SC
 - real-time online adaptation experiment

Experimental background

Allophonic distributions of the underlying low vowel /A/ followed by a nasal in SC

	Vowel /A/		
Lexical representation	/ [+low] n /	/ [+ low] ŋ /	
Assimilation	[-back] n [+low]	[+back] 1) [+low]	
Surface form	[an]	[aŋ] •	

Experimental design

Possible mappings:

2 possibilities in <mark>SC</mark>

Hypotheses

Hypothesis A: Mapping occurring at the phonemic level Hypothesis B: Mapping occurring at the phonetic level

English	SC
æn	an
an	an
æŋ	aıj
aŋ	aŋ

	A 6	· · ·	
	English	Standard Chinese	
	æn	an	
/	ũn	aıj	
	æŋ	an	
	aŋ	aŋ	

Experimental setup

- Stimuli
 - 36 nonsense English utterances and 36 fillers by a native speaker of English
 - 36 Chinese words and 36 fillers by a speaker of SC.
- Presentation of stimuli
 - each stimuli was presented acoustically to the subjects in the AXB frame, where AB=SC, X=English
- Subjects
 - 15 native speakers of SC
 - decide which SC stimulus sounded the closest to the English stimulus

Results

ard Chinese
[an] or [ɑŋ]

Exploration of results

(Let A represent the backed /A/, a the fronted /A/)

Questions raised

- 1. Why is the English [aeng] mapped to the SC [an]?
- 2. Why is the English [An] mapped to *either* [*an*] *or* [Ang] in SC (i.e. 50/50 split)?

• Possible explanations

- Perhaps "vowel quality" is more important in on-line adaptations
- Nasal codas in English and SC have similar acoustic attributes but the attributes differ in weighting due to differences in phonotactic constraints

Acoustic theory of nasalization

- Nasal consonants
 - complete oral closure
 - open velopharyngeal port
 - no pressure increase behind the constriction
- Nasal branch
 - adds extra poles and zeros to the all-pole system of the oral vowel

Acoustic evidence

F2 transition

24.921 Class Presentation

Summary

24.921 Class Presentation

24.921 Class Presentation

Thank you!

Questions and comments?