A Minimalist *Program* for Linguistic Theory (Chomsky 1993): The Minimalist Chronicles — Episode I, Part 2

MIT, 24.951, Fr 5 Dec 2003

Recall key intuitive insights and methodological desiderata from MPLT

... some of which are thorougly revised in Chapter 4

- (1) "The linguistic expressions are the optimal realizations of the interface conditions, where "optimality" is determined by Economy conditions of UG." (Chomsky 1993:4)
 - a. Reach the interfaces (PF and LF) as selfishly, as quickly, and as lazily as possible, and maximize covert operation—cf. Greed, Last Resort, Shortest Move, Procrastinate.

But recall, e.g.:

- (a) the empirical problems with Greed: Les tables ont toutes été repeintes (French), I believe John to have been chosen for the job
- (b) the empirical problems with Last Resort (and Greed?): Les filles sont toutes intelligentes.
- (c) the conceptual/computational problem with Greed: comparisons across derivations quickly lead to exponential complexity—a non-optimal computational burden
- b. All grammatical principles reduce to Economy considerations and to conditions imposed on the interface ("Bare Output conditions" in Chapter 4).
- c. All movement operations are driven by feature-checking and ultimately by the need to delete (at the latest by LF) *all* "morphological" features introduced by lexemes.
- d. Parameters live in functional heads: All cross-linguistic variation reduce to functional heads' "morphological" idiosyncracies with PF effects, specially the differential effects of Strong vs. Weak features of functional heads on Spell-Out—the point at which morphophonological features are stripped from the derivation and shipped to PF:
 - (a) No morphological feature is interpretable at the interfaces. Thus morphological features must delete (by the end of LF computations; see below).
 Deletion of morphological features is the result of feature-checking via movement into the relevant checking domain (see (6)).
 - (b) Strong features are visible at LF, though they are not PF-interpretable. So they must delete—be checked—by Spell-Out, giving rise to overt movement.'

- (c) Weak features, though they are not PF-interpretable, are not "visible" at PF. So they can, and (per Procrastinate) must delete post-Spell-Out, in the LF branch.¹
- e. At LF, all languages are alike (a learnability argument?)—"one computational system and one lexicon, apart from this limited kind of variety".

Implementing (aspects of) Shortest Move in MPLT(continuing from 12/3 handout)

Why isn't object shift a Shortest-Move violation?

- (2) a. ... [VP Subj [$_{V'}$ V Obj]]
 - b. $[Agr_sP \quad Subj_i \dots \quad [Agr_oP \quad Obj_j \quad [Agr'_o \quad \dots \quad [VP \quad t_i \quad [V' \quad t_V \quad t_j \quad] \quad] \quad] \quad]$

Compare with the super-raising case in (3):

- (3) a. It seemed that $[Sue_i \text{ was believed } [t_i \text{ to have won }]]$
 - b. * Sue seemed that [it was believed [t_i to have won]]
- (4) Answer: Crucially depends on what counts as "nearer" A-position for Shortest Move.
 Holmberg's Generalization might give us a hint as to the adequate definition of "nearer". What exactly allows leap-frogging? V-to-I?

Specifiers that are in the same "mininal domain" are equidistant, and V-to-I (and head-movement in general) enlarges domains in a constrained way (see (6); cf. Baker's Government Transparency Corollary).

[Chomsky 1995ff offers cyclic revisions of Shortest Move and the accompanying apparatus in (6)]

Defining Domains—MINIMAL DOMAIN, INTERNAL DOMAIN, CHECKING DOMAIN, etc. (Chomsky 1993:11ff)

- (5) Consider a head α .
 - a. $MAX(\alpha)$ = the least full-category maximal projection dominating
 - b. DOMAIN(α) = the set of nodes *contained* in in Max(α) that are distint from and do not *contain* α (cf. m-command)

[NB: Recall the distinction between *containment* and *domination*—the latter entails the former, but not vice-versa.]

- c. COMPLEMENT DOMAIN OF α = the subset of domain(α) that is reflexively dominated by the complement of the construction (cf. c-command)
- d. RESIDUE OF $\alpha = \{ \operatorname{domain}(\alpha) \}$ complement-domain (α) .

[The Residue is an "heterogeneous set": Spec + anything adjoined to the maxi-

¹Are there "extra Weak" features, invisible at both PF and LF?

mal projection of α , to its Spec or its head.]

- e. Given a set S of categories, MIN(S) = the smallest subset K of S such that for any γ in S, there is some β in K that reflexively dominates γ .
- f. Internal domain of α = Minimal complement domain of α
- g. Checking domain of α = Minimal residue of α
- (6) Consider a chain $CH = (\alpha_1, \ldots, \alpha_n).$
 - a. Domain(CH)=the set of nodes contained in Max(α_1) and not containing any α_i (*i from 1 to n*).
 - b. COMPLEMENT DOMAIN OF CH = the subset of domain(CH) that is reflexively dominated by the complement of α_1 .
 - c. RESIDUE and MIN(S(α)) as before (see (6d) and (6e)), now for α =CH.

Back to Holmberg's Generalization:

(7)

 $\begin{array}{l} \text{Before V-to-Agr_oraising:}\\ \text{Domain}(\text{V}) = \{\text{Subj, Obj} + \text{everything}\\ & \text{they dominate}\}; \}\\ \text{Internal-Domain}(\text{V}) = \{\text{Subj, Obj}\} \end{array}$

After V-to-Agr_oraising: CH={V, t_V }; Domain(CH) = {[Spec,Agr_o], Subj, Obj + everything they dominate}; Internal-Domain(CH) = {[Spec,Agr_o], Subj, Obj}

(8) a. **Equidistance**:

If α , β are in the same minimal domain, they are equidistant from γ .

- b. V-to-Agr_omovement in (11) makes [Spec,Agr_o] and [Spec,V] equidistant from object of V. Thus, object shift does not violate Shortest Move.
- c. After overt (pre-Spellout) V-to-Agr_omovement (with Strong V-feature in Agr_o), Icelandic objects can move overtly (pre-Spellout) to [Spec,Agr_o], and they *must* do so if Agr_o's NP-features are Strong.
- (9) a. Why no (overt) object shift in Haitian Creole? Among other things, a "morphological" (Strong vs. Weak) difference in the V-features of the relevant INFL heads.

- b. What about Swedish (with object shift of pronouns only)? What about French? Relativizing Strong NP features?
- (10) Another (potential) problem? Although the shifted object must be semantically specific, it cannot be specificity that is driving movement in a conventional MPLT way: without verb-movement (a syntactic factor), specific DPs will not object shift and the corresponding sentence is still acceptable. What checks the Strong NP-feature of Agr_o in such cases? Similarly, how come in-situ non-specific objects in V-to-Agr_o environments do not cause the derivation to crash? [Chomsky will provide an answer in a later episode.]

Solving a (potential) θ -theory problem for Larsonian VP shells

Before V-to-V raising:	After V-to-V raising: $CH = \{put, t_{put}\};$
$Domain(V_2) = \{NP_2, PP + everything they dominate\};\}$	Internal-Domain(CH) = $\{NP_1, NP_2, PP\}$ (the args. of put);
$Complement-Domain(V_2) = \{PP\}$	Complement-Domain(CH) =
$Checking-Domain(CH)=\{NP_2\}$	$\{NP_2, PP\}$ (the int. arg.)
	Checking-Domain(CH)= $\{NP_1\}$ (the

ext. arg.)

No D-structure? No S-structure? Only interface levels PF and LF?

- (12) a. [Which picture of $himself_i$]_j did Mary say John_i liked t_j
 - b. * [Which picture of $John_i$]_j did Mary say he_i liked t_j
- (13) a. * [Which claim that John_i was incompetent]_j did Mary say he_i rejected t_j
 - b. [Which claim that $John_i$ had $heard]_j$ did Mary say he_i rejected t_j
- (14) Binding Theory at D-structure, with adjuncts (but not complements) merged after *wh*-movement?

Problem with Binding Theory (Condition C) at D-structure: A-movement

(15) [This picture of $John_i$]_j seemed to him_i t_j to be good

(16) * It seemed to him_i that the this picture of $John_i$ was good

Does Binding Theory apply at both D-structure and S-structure?

(17) John_i wondered [which picture of himself_{i/j}]_k Bil_j saw t_k

Solution: Copy-Theory of movement + Binding Theory as an LF condition (No need for D- and S-structure levels

(18) John wondered [which picture of himself] Bill saw [which picture of himself]?

- a. [[which picture of himself] $[_{wh-} t]$ Bill saw [which picture of himself] $[_{wh-} t]$] [Which x, x a picture of himself] Bill saw x
- b. [which [wh- t picture of himself]] Bill saw [which [wh- t picture of himself]]

which x Bill saw [x picture of himself]

- (19) a. (Guess) $[in which house]_i John lives t_i$ (Cf. Which house John lives in?)
 - b. $[_{wh-}$ In which house] John lives $[_{wh-}$ In which house]
 - c. DP- or D-variable? The old one vs. That (house)
 - 1. $[which house]_i [wh] in t_i \rightarrow [which x, x a house] [in x]$
 - 2. $which_i [wh_i in [t_i house]] \rightarrow [which x] [in x house]$

A neat prediction:

- (20) a. John wondered which picture of himself Bill took
 - b. John wondered which picture of himself Mary took

Another neat prediction?

- (21) a. John_i wondered which picture of $himself_{i/j}$ Bill_j saw
 - b. John_i wondered which picture of $Bill_j$ $he_{i/*j}$ saw

One remaining problem? (Remember Lebeaux's solution to it?)

(22) [The claim that John_i was asleep seems to him_i]_j [_{IP} t_j to be correct] (Cf. * I seem to him_i to like John_i)