Homework \#3: Reconstruction (due on 3/6)

1. Reconstruction and Condition A :

Consider the ambiguity of the sentence in (1), and the proposal that it is derived from two logical forms that are hinted at in (2)
(1) How many books did John decide to read?
(2) a. $\operatorname{How}_{\mathrm{n}}$ did John decide $\left[\mathrm{t}_{\mathrm{n}} \text { many books }\right]_{1}$ to read t_{1}

Paraphrase:
What is the (maximal) number n, s.t. John decided that he would read that number of books?
b. $\mathrm{How}_{\mathrm{n}}$ did $\left[\mathrm{t}_{\mathrm{n}} \text { many books }\right]_{1}$ John decide to read t_{1}

Paraphrase:
What is the (maximal) number n, s.t. there are n many books that John decided that he would read?

Is there a prediction that might follow from our discussion of Condition A and the way it is affected by A-bar movement? Try to come up with an example sentence that would be predicted to be bad under the logical form in (2)a, if Condition A applies at Logical Form.

1. Reconstruction and A movement:

Consider the following ambiguity
(3) Every first year student didn't come to the party.
a. Paraphrase \#1: For every first year student, x, x didn't come to the party.

$$
\text { (} \forall \gg \text { not })
$$

b. Paraphrase \#2: At least one first year student didn’t come to the party.

$$
(\text { not }>\forall)
$$

(4) Every coin didn't land heads.
a. Paraphrase \#1: For every coin, x, x didn't land heads.

$$
(\forall>\text { not })
$$

b. Paraphrase \#2: Not all coins landed heads. (i.e. at least one didn't)

$$
(\text { not }>\forall)
$$

[The second interpretation is easy to see in the following dailogue:
Q: How did this coin land?
A: I don't know, but I can tell you that every coin didn't land heads (with a "rise" on every and a "fall" on didn't)]

Propose two logical forms for these sentences.

What might you conclude from the following?
(5) Every first year student doesn't seem to his classmates to be likely to come to the party. ($\forall>$ not) (not $>\forall$)
(6) Every coin is expected not to land heads.

$$
(\forall>\text { not }) *(\text { not }>\forall)
$$

