Minimalist Inquiries
 (Chomsky 1998/2000)

1. How it all works

(1) How it works: Part 1 [p. 101]
(I) Select $[\mathrm{F}]$ from the universal feature set $\{\mathrm{F}\}$
(II) Select LEX, assembling features from [F]
(III) Select LA (lexical array) from LEX
(IV) Map LA to EXP, with no recourse to [F] for narrow syntax

(2) How it works: Part 2

a. Merge: "takes two syntactic objects (α, β) and forms $\mathrm{K}(\alpha, \beta)$ from them.
b. Agree: "establishes a relation (agreement, Case-checking) between an LI α and a feature F in some restricted search space (its domain)."
c. Move: combining Merge and Agree. [A-movement if motivated by a φ-feature; A-bar if motivated by a P ["peripheral"]-feature]

Occurrences

- Move creates two occurences of a single α, where an "occurence of α " is the full context of α.
- "Chain" is a set of occurences. If occurences are "full contexts" we don't need to say that a chain is a sequence, since there will be a containment relation between the contexts that allows us to reconstruct whatever we might needed the ordering property of a sequence for.]

Prioritizing

- Move is more complex than its subcomponents.
- Move is more complex than even its subcomponents together -- since it involves the extra step of determining pied piping.
- Consequently:
(3) Merge or Agree "preempt" Move.
- "This yields most of the empirical basis for Procrastinate", p. 102

2. The problems

(4) Core Functional Categories (CFCs)
a. C
b. T
c. v

- All may bear uninterpretable φ-features
- Only C may be unselected (i..e. be the root).
- T has a full set of φ-features if selected by C, otherwise it is defective (ECM/Raising).
- v may take an external argument (EA) [Key: this is in addition to any other SPEC it gets.]
(5) Specifiers: each CFC gets one "beyond its s-selection ${ }^{11}$ [relevant to v] thanks to "EPP features"
a. for C, a raised wh-phrase
b. for T , the surface subject
c. for v, the shifted object in Object Shift
(6) Some properties of these CFCs: $\boldsymbol{\alpha}=[$ [XP [(EA) H YP]] [pp. 102-103]
(i) How they get their specifiers:

If \mathbf{H} is $\boldsymbol{v} / \mathbf{C}, \mathbf{X P}$ [the outermost specifier] is not introduced by pure Merge
[possible issues with C: whether? how come? Polish czy?]
[T may have an expletive inserted as XP , so T is not mentioned]
(ii) Their social relations with the next highest T :

In the configuration [$\beta \mathrm{T}_{\boldsymbol{\beta}} \ldots \ldots$, $\boldsymbol{\beta}$ minimal, ${ }^{2}$
(a) if \mathbf{H} (head of $\boldsymbol{\alpha}$) is \mathbf{C} [or a lower \mathbf{T}], $\mathrm{T}_{\boldsymbol{\beta}}$ is independent of $\boldsymbol{\alpha}$ [i.e. CP is a "closed system" -- no inbound or outbound agreement; anticipates the notion "phase"]
(b) if \mathbf{H} is $\boldsymbol{v}, \mathbf{T}_{\boldsymbol{\beta}}$ agrees with EA, which may raise to $\mathbf{S P E C}^{\boldsymbol{T}} \boldsymbol{T}_{\boldsymbol{\beta}}$ though XP [i.e. an accusative-marked object] cannot [Assumption: Object Shift position is higher than EA position because of (1) bottom-to-top tree building, and (2) Merge before Move.

Observation: only the EA can raise and only EA triggers agreement with T.
(c) if \mathbf{H} is $\mathbf{T}_{\text {defective }}, \mathbf{X P}$ raises to $\mathbf{S P E C - T _ { \boldsymbol { B } }}$ if there is no closer candidate $\boldsymbol{\gamma}$ for raising
[This is raising to subject. I guess he forgot about ECM...]
(7) Theta-theoretic principle

Pure merge in a theta-position is required of and restricted to arguments. [Derives (6i) since v 's XP position is not a theta-position and C has no theta-position. Also guarantees that no arguments are merged directly in Spec,TP.]

3. Phase

(8) Complexity considerations
(i) Simple operations preempt more complex ones
(ii) Search space is limited (locality)
(iii) Access to the feature set $[\mathrm{F}]$ is restricted by (1).
(iv) Computation is locally determined (no look-ahead)

[^0]- Why is "raising" ever possible, given (i) and the availability of expletives to satisfy the EPP property of T ?
- Answer: perhaps expletives are not always available. Perhaps only a subset of LA is available to derivation, so that if expletive is not in the subarray, it is not available. Thus, EPP motivates Move. [This Chomsky 1995's numeration.]

The chunk of derivation that has access to a given subarray is called a phase.

Phases $=\nu \mathbf{P}$ and CP (categories that are "propositional")

- Solves a problem for numeration without phase (Marantz, Thursday class 1994):
(9) There was assumed to be a reason why a man is in the garden.

Where availability of there upstairs should pre-empt movement of a man to the subject of be downstairs. If there is only one phase, i.e. the root phase, as in Chomsky 1995.

(10) Strong cyclicity condition

The head of a phase is "inert" after the phase is completed, triggering no further operations.

[Phase convergent domain:

because of successive-cyclic $w h$-movement -- assuming the $w h$-phrase has an uninterpretable feature like Case on nouns, only deleted in its final (specifier of interrogative C) position.] -and, of course, assuming that the CPs through which wh-movement passes are phases. (Alec's problem arises in these cases as well: At which bus top was there a reason to suppose that a linguist got off? So we know that phases don't work differently when $w h$-movement happens to happen.]

Phases also provide a rationale for successive-cyclic movement if they are "impenetrable" except for their periphery.

(11) Phase impenetrability

In phase α with head H, the domain of H is not accessible to operations outside α, but only H and its edge.
[This could not be stated if phase=convergent domain, since phrases move from the edge of a phase - on the assumption that if a category moves, there must be s omething non-convergent about it.]

(12) "Crash" in a world with phase impenetrability

The derivation crashes if at the end of a phase α with head H, the domain of H contains an uninterpretable feature. [buried in the prose, bottom of p. 108]

This allows successive-cyclic movement, where movement is driven by the checking of a feature on some later phase.
[Question: What is motivating movement to the phase edge in the case of successive-cyclic whmovement?? There is also discussion of QR? Is it possible that movement to the periphery is "free" in some sense?]

[^1]
(13) EPP-features

a. The head of phase PH (i.e. C and v) may be assigned an EPP- and P-feature.
b. T bears an EPP-feature perhaps universally.
[i.e. optionality of EPP is a property of the phase]

- Assignment of optional EPP/P-feature is the last operation of a phase.
[Navigation assistance: we are now on page 109]

4. Probes, Goals: No Agree unless Active

Probes and Goals

(14) T be elected an unpopular candidate

- T has $u \phi$ and EPP features.
- Probe: ϕ-features of T
- Goal: an unpopular candidate, which has matching features.
- $\mathbf{P}(\mathbf{G})$: "pied piping" of a phrase determined by the goal of T's probe
"...taking structural Case to be a reflex of an uninterpretable ϕ-set, it too erases under matching with the probe."

Movement $=$

- selection of $\mathbf{P}(\mathbf{G})$
- move of $P(G)$
- feature-deletion under match (Agree)

How probe-goal works:

(I) matching is feature identity
(II) $\mathbf{D}(\mathrm{P})$ ("domain of P ") is the sister of P
(III) locality reduces to "closest c-command"

Closest:

(15) Equidistance

"Terms of the same minimal domain are 'equidistant' to probes." [not used until much later, to get the EA out of $v \mathrm{P}$ over an object-shifted object]
(16) Minimal Domain

The minimal domain of a head H is the set of terms immediately contained in projections of H .

Undifferentiated features

(17) Activity condition

A goal must bear some uninterpretable feature [otherwise it is frozen in place].

- This is why structural case exists!
- The "character" of the Case (nominative, accusative)merely registers the identity of the probe, so that "structural Case itself" is a single, undifferentiated feature. This is why differently-cased DPs can interfere with each other.

Agreement on T

- If Case is an undifferentiated feature on the goal in examples like Probes and Goals
- (14), then by parity of reasoning the ϕ-features of the probe are not specified for values.
- Actual "agreement" is a result of the rule "Agree".

i.e. uninterpretable -> value unspecified

- This yields "defective intervention constraints", where the closest bearer of the features sought by a probe is nonetheless inactive.
- The key point: Being active is not a requirement for Goalhood, but is a requirement for Agreement.
[We are now on page 123.]

5. Fullness of features

- If one ϕ-feature on probe deletes, all delete. Evidence: no agreement in distinct features with distinct DPs.
- Likewise, unless all ϕ-features on goal delete, none of them delete. Evidence: participles that lack person features may attract a DP, but do not cause the ϕ--features of the goal to delete. That is why you get participle agreement with passive and unaccusatives, alongside T-agreement with the same DP.
- Similarly, $\mathrm{T}_{\text {defective }}(t o)$ can attract a DP if it has, say, just [person], and allow the DP to move on in a raising construction.
- More generally: for α and β a probe and a goal, neither can delete ϕ-features of the other unless it is ϕ-complete.
- Expletive there must have properties quite similar to $\mathrm{T}_{\text {defective }}$.
- Since it moves around like a normal DP, it has some attractable feature, e.g. [person] -- call it G. [But since it is not ϕ-complete it does not delete features on T.]
-
- But it does not delete the probe features, as witnessed by LD agreement.
(18) there were declared guilty three men

When there raises to normal T the story is:

- The full set of ϕ-features on \mathbf{T} deletes the uninterpretable feature \mathbf{G} of there.
- G on there is deleted by the ϕ-features on T, so it stops raising.
- [T Agrees with its associate...]

Note that LD agreement is not specifically a property of expletive constructions, but of constructions where the specifier of TP does not have a full set of ϕ-features. Thus dative subjectconstructions also show LD agreement.
(19) Conclusions so far:
(i) Long-distance agreement is a T-associate (probe-goal) relation.
(ii) EPP can be satisfied by:
(a) Merge of expletive
[T-associate agr.]
(b) Merge of associate [your basic boring sentence]
(c) Merge of α closer to T than the associate
[dative subjects etc.]

6. Inertness again

(20) Time out for ontology
(A) lexical items LI
(B) modified lexical items MLI
(C) sets K constructed from given elements a, β.
"An MLI is an LI with uninterpretable features deleted."

A note on Case

- Recall that structural Case is there to make DPs "active".
- This means that Case-checking requirements do not motivate movement, beyond allowing it to happen.
- The action is in the ϕ-features of T.
- [Case only ever deletes because it's part of the ϕ package.]

Wh-movement is much the same

- wh-phrases have uninterpretable $w h$ amd interpretable Q, which matches uninterpretable probe $u \mathrm{Q}$ on C.
- For successive-cyclic movement, C (and v) may have a non-specific P-feature which attracts whphrases but does not delete their $w h$-feature.
- The $w h$-island condition arises because $w h$ in an interrogative Q has its $w h$-feature deleted and thus is inert, while still bearing Q-- thus blocking access to lower wh-phrases.
(21) All the phrases marked with superscript " I " are inert:
(i) $*\left[\right.$ John to seem $\left[\mathrm{t}^{\mathrm{I}}\right.$ is intelligent $\left.]\right]$ (would be surprising)
(ii) *(we hoped) [PRO to be decided [t^{I} to be killed at dawn]]

(iv) *there seem $\left[\alpha[S U \text { several people }]^{I}\right.$ are [${ }_{\text {PRED }}$ friends of yours] $]$

7. It works

(22) Some features of these CFCs: $\alpha=[$ XP [(EA) H YP $]]$
[...]
(ii) Their social relations with the next highest T :

In the configuration $\left[\boldsymbol{\beta} \mathbf{T}_{\boldsymbol{\beta}} \ldots\right]^{\boldsymbol{\beta}} \boldsymbol{\beta}$ minimal,
(a) if \mathbf{H} is \mathbf{C} [or a lower \mathbf{T}], $\mathbf{T}_{\boldsymbol{\beta}}$ is independent of $\boldsymbol{\alpha}$
[i.e. CP is a "closed system" -- no inbound or outbound agreement]
(b) if \mathbf{H} is $\boldsymbol{v}, \mathrm{T}_{\boldsymbol{\beta}}$ agrees with $E A$, which may raise to SPEC- $_{\boldsymbol{\beta}}$ though XP cannot
[Assumption: Object Shift position is higher than EA position because of (1) bottom-to-top tree building, and (2) Merge before Move.

Observation: only the EA can raise and only EA triggers agreement with T.]
(c) if \mathbf{H} is $\mathbf{T}_{\text {defective }}, \mathbf{X P}$ raises to $\mathbf{S P E C - T}_{\boldsymbol{\beta}}$ if there is no closer candidate Γ for raising
[Raising to subject; I guess this forgets ECM...]
Case a: $\alpha=[$ XP [C TP] $]$

- If T is non-defective, and the derivation didn't crash at α, then the ϕ-set of T has been deleted.
- No element within TP can still have a structural case feature undeleted, because the element in agreement with T creates a "defective intervention effect".
- So a higher T can't interact with the contents of $\alpha=C P$.

Case b: $\alpha=[\mathrm{XP}[\mathbf{E A}[v \mathrm{YP}]]$

- XP is inactive, since its Case-feature has been deleted by v 's ϕ-set.
- But EA is equidistant with XP from the higher T, so it can be a goal of T's probe,

Case c: [omitted for reasons of space]

8. Architectural questions

- Deleted features enter PF, so spell-out is cyclic in some sense.
- Suggestion: by phase.
- So there is a single cycle, all operations are cyclic.
- Overt/covert operations are interspersed.

Finale: cyclicity, labels, why specifiers are higher than complements.

[^0]: 1 "Semantic selection", here $=\theta$-role.
 ${ }^{2}$ Easy to get confused here, the " α " mentioned here is intended to be the same α in (6).

[^1]: Cite as: David Pesetsky, course materials for 24.952 Advanced Syntax, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

