- (1) **The S-Exhaustivity Generalization (predicted by Sauerland's Theory)**: utterance of a sentence, S, as a default, licenses the inference that (the speaker believes that) every sentence is false if it is Sauerland-Excludable given S and Alt(S).
 - p is *Sauerland-Excludable* given S and C if $p \in C$, p is stronger than S and $\neg \exists q \in C$ [(q is stronger than S) and (S $\land \neg p$ entails q)].

Homework:

Prove that the Sauerland-Exhaustivity Generalization is indeed predicted by Sauerland's theory.

Solution to question 1:

Let p be Sauerland-Excludable given S and Alt(S). We need to prove that

 $B_s(S) \land \bigcap PI \land B_s(\neg p)$ is not contradictory

Assume otherwise: (and try to derive a contradiction)

(a) $B_s(S) \wedge \bigcap PI \wedge B_s(\neg p)$ is contradictory.

We conclude:

(b) $B_s(S) \wedge B_s(\neg p)$ entails $\neg \bigcap PI$

(c) $B_s(S) \wedge B_s(\neg p)$ entails $\bigcup \neg PI$ (De Morgan)

(d) $B_s(S) \land B_s(\neg p)$ entails $\bigcup \{B_s(q): q \in Alt(S) \text{ and } q \text{ stronger than } s\}$

Let w^0 be a world in which s believes nothing but S and $\neg p$ (and their logical consequences).

(e) w^0 satisfies $\bigcup \{B_s(q): q \in Alt(S) \text{ and } q \text{ stronger than } s\}$. (given the entailment in (d))

For a world to satisfy a disjunction, it must satisfy one of the disjuncts.

So

(f) there must be a $q_i \in Alt(S)$, stronger than s such that q' is a logical consequence of S and $\neg p$.

Hence,

(g) p is not Sauerland-Excludable.

Note: it is easier to prove the other direction, i.e. $\forall p \in ALT(S)(B_s(\neg p) \text{ is a Secondary Implicature})$ of S by Sauerland's algorithm $\rightarrow p$ is Sauerland Excludable given S and ALT(S)).

24.954 Pragmatics in Linguistic Theory Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.