HPSG II: the plot thickens

1 Passive: a lexical rule that rearranges ARG-ST!

(1) Passive Lexical Rule

[The role of the index is to preserve the theta-role of the first member of ARG-ST in the input as the theta-role of the object of by in the output. The index is the value for INDEX.]
(2) Lexical Entry for be in passive sentences

- Notice how the subject of the embedded clause serves as the subject of be.
- The notation SPRinternal to the second member of ARG-ST entails that the SPR list is non-empty. Thus, be is selecting a non-saturated VP -- in effect, a V'. [Notice that COMPS is empty, i.e. it's not a VO!]
- That is, the Head-Specifier rule just does not apply to the embedded VP. Onward to Raising!
- The reference to "FORM pass" is replaced by "PRED +" in the next chapter, to allow be with other complements.

Review:

(3) The Valence Principle (p. 106)

Unless the rule says otherwise, the mother's values for the VAL features (SPR and COMPS) are identical to those of the head daughter [i.e. SPR and COMPS are "head features" by default]
(4) HEAD SPECIFIER RULE (p. 106)
$\left[\begin{array}{ll}\text { phrase } & \\ \mathbf{V A L}[\mathbf{S P R} & \rangle\end{array}\right] \rightarrow 2 \quad \mathbf{H}\left[\begin{array}{l}\text { phrase } \\ \text { VAL }\left[\begin{array}{lr}\text { SPR } & 2 \\ \text { COMPS }\rangle\end{array}\right]\end{array}\right]$

(5) HEAD COMPLEMENT RULE (p.106)
 [No mention of SPR, thanks to the Valence Principle.]

- Notice that because the Passive rule manipulates ARG-ST, we predict that Binding Theory in passive sentences will look at the "new ranking" rather than the old -- see the problem on p.247.

[^0]
2 CP-complementation

A new type comp joins noun as subtypes of a type nominal (subtype of agr-pos). Nominal licenses the feature CASE.

Note that C adds no semantics to the S to which it attaches.
(6) Complementizer lexemes

(7) Extraposition [a word-to-word rule]
$\sum_{\mathrm{X},\left[\operatorname{SYN}\left[\operatorname{VAL}\left[\begin{array}{lll}\text { SPR } & 2 & \mathrm{CP} \\ \text { COMPS } & \text { a }\end{array}\right]\right]\right.} \quad[] \Rightarrow$
$\left.\left.\left[\begin{array}{l}\text { word } \\ \mathrm{Y},\left[\operatorname{SYN}\left[\operatorname{VAL}\left[\begin{array}{l}\operatorname{SPR}\langle\mathrm{NP}[\text { FORM it }]\rangle \\ \operatorname{COMPS} \\ \mathrm{a} \\ \mathrm{a}\end{array} \mathrm{\oplus}, 2\right.\right.\right.\end{array}\right]\right]\right]$

3 Raising-to-Subject verbs

Infinitival to treated as an auxiliary verb:
(8) Lexical entry for to [p. 362]

(9) subject-raising-verb-lx, (srv-Ixm)

$$
\left\{\begin{array}{l}
\operatorname{ARG}-\operatorname{ST}\left\langle 1,\left[\begin{array}{l}
\operatorname{SPR}\langle\boxed{1}\rangle \\
\operatorname{COMPS}\langle \rangle \\
\operatorname{INDEX} \mathrm{s}_{2}
\end{array}\right]\right. \\
\operatorname{SEM}\left[\operatorname{RESTR}\left\langle\left[\operatorname{ARG} \mathrm{s} 2_{2}\right]\right\rangle\right]
\end{array}\right]
$$

(10) Lexical entry for continue

- By (9), the first member of ARG-ST is unified with the SPR value of the second member of ARG-ST.
- Continue has only one semantic argument, even though there are two members of ARG-ST.
- Because continue takes a second argument that has a non-null value for SPR, it is taking an unsaturated VP, not an S -- hence there is no overt embedded subject.

4 Subject control verbs

(11) subject-control-verb-lxm (scv-lxm)

(12) try

- "Note that the first argument of try and the subject of the VP are not identified; only their indices are." [p. 373] Coindexing vs. unification is motivated by the evidence that movement-based theories use to argue for control vs. movement -e.g. transmission of quirky case with raising verbs, but not with control verbs in Icelandic.
- But the key difference is the fact that here a theta role is assigned to the SPR of try (cf. the assimilation of control to movement by Wehrli, Bowers, Hornstein, etc.)
- Likewise, ECM vs. object control is a question of whether the second argument is or is not assigned a theta-role (in RESTR), with (once again) a subsidiary difference in unification vs. coindexing. [pages 377ff]

5 Raising-to-Object verbs (ECM)

(13) object-raising-verb-lx, (orv-Ixm)

$$
\left[\begin{array}{l}
\operatorname{ARG}-\operatorname{ST}\left\langle\mathrm{NP}, \sqrt[1]{1},\left[\begin{array}{l}
\operatorname{SPR} \boxed{1} \\
\operatorname{COMPS}\langle \rangle \\
\operatorname{INDEX} \\
\mathrm{s}_{2}
\end{array}\right] /\right. \\
\operatorname{SEM}\left[\operatorname { R E S T R } \left\langle\left[\begin{array}{ll}
\operatorname{ARG} & \left.\left.\left.\mathrm{s}_{2}\right]\right\rangle\right]
\end{array}\right]\right.\right.
\end{array}\right.
$$

(14) Lexical entry for expect [p. 378]

6 Object control verbs
(15) object-control-verb-Ixm (ocv-Ixm)

$$
\left\lfloor\begin{array}{l}
\operatorname{ARG}-\mathrm{ST}\left\langle\mathrm{NP}, \mathrm{NP}_{\mathrm{i}},\left[\begin{array}{l}
\mathrm{SPR}\langle\mathrm{NPi}\rangle \\
\operatorname{COMPS}\langle \rangle \\
\operatorname{INDEX} \\
s_{2}
\end{array}\right]\right. \\
\operatorname{SEM}\left[\operatorname{RESTR}\left\langle\left[\begin{array}{ll}
\text { ARG } & \mathrm{s} 2
\end{array}\right]\right\rangle\right]
\end{array}\right]
$$

(16) persuade

$$
<\text { persuade, }\left\{\begin{array}{l}
\text { ocv-lxm } \\
\operatorname{ARG-ST}\left\langle\mathrm{NP}_{i}, \mathrm{NP}_{i},\left[\begin{array}{c}
\mathrm{VP} \\
\mathrm{INF}+
\end{array}\right]\right\rangle \\
\left.\operatorname{SEM}\left[\begin{array}{l}
\operatorname{INDEX} s \\
\operatorname{RESTR}\left\langle\begin{array}{l}
\text { RELN persuade } \\
\text { SIT } s \\
\text { PERSUADER } j \\
\text { PERSUADEE } i
\end{array}\right]
\end{array}\right]\right\rangle>
\end{array}\right]
$$

7 Binding meets Raising in Balinese: Wechsler 1998

[http://uts.cc.utexas.edu/~wechsler/Balinese-bind.pdf]
Balinese: Agentive Voice - top argument is subject. Type acc-verb.
Objective Voice - any non-top argument is subject. Type erg-verb.
(17)
$\left[\begin{array}{l}\operatorname{SYN}[\operatorname{VAL}[\operatorname{SPR}\langle\mid 1\rangle\rangle] \\ \operatorname{ARG}-\operatorname{ST}\langle\mid 1, \ldots\rangle\end{array}\right]$
b. erg-verb: $\neg\left[\begin{array}{l}\operatorname{SYN}[\operatorname{VAL}[\operatorname{SPR}\langle\Delta\rangle\rangle]] \\ \operatorname{ARG}-\operatorname{ST}\langle\mid, \ldots\rangle\end{array}\right]$
[NB: Wechsler uses "SUBJ" instead of "SPR", and has a different type hierarchy.]

- Binding Theory makes reference to the ARG-ST list -- not to SPR and COMPS or to tree-structure (UG?). So it is indifferent to AV/OV.
(18) a. Ida nyingakin ragan idane. 3sg AV.see self
b. Ragan idane cingakin ida. self OV.see 3SG
- Raising-to-subject involves unification of 1st argument of upstairs ARG-ST with downstairs SPR. Thus, if downstairs verb is OV, it is a downstairs non-top argument that "raises".
(19) Raising-to-subject + downstairs AV/OV
a. you seem much [AV.hide her-mistake]
[(15b)]
b. her-mistake seem much [OV.hide you]
- Raising-to-object involves unification of second member of ARG-ST with SPR of third member. Upstairs AV/OV alternation yields predictable results
(20) Raising-to-object + upstairs AV/OV
a. I AV.know Nyoman Santosa go.home.
b. Nyoman Santosa OV.know I go.home
- Though space limitations left the examples out, presumably downstairs AV/OV behaves as predicted:
(21) Raising-to-object + upstairs AV/OV and downstairs OV a. I AV.know you AV.hide her-mistake.
b. I AV.know her-mistake OV.hide you.
c. you OV.know I AV.hide her-mistake.
d. her-mistake OV.know I OV.hide you.

[^1]
Binding:

- Key point: Raising is reflected in the ARG-ST of the higher verb, even though $\mathrm{AV} / \mathrm{OV}$ is not reflected in the ARG-ST of the lower verb.
- Thus, for example, a raised subject with seem will be able to bind an upstairs experiencer -- even as it may be bindable by a downstairs agent when the lower verb is OV .
(22) Binding and Raising-to-Subject
a. upstairs: he seemed to-self to be ugly [(19)]
b. downstairs: self seem very OV.boast he [(22)]
- Likewise for Raising-to-Object
(23) a. upstairs: I AV.think myself/*me already dead
b. downstairs: I AV.think himself already OV.see he
c. upstairs: myself OV.think I already dead
d. downstairs: himself OV.think I already OV.see he 'I believe that he already saw himself'
- The problem for GB: Suppose OV is binding-neutral because it involves, say, Abar movement. Then downstairs OV + upstairs binding must involve improper movement. We can't let downstairs OV position be optionally A, or else we'd mess up the binding properties of the downstairs clause.
- The HPSG alternative is straightforward, since the theory allows for more than one mapping from ARG-ST onto SPR/COMPs and can do raising via SPR features.

8 Long-Distance Dependencies

- An element present on the ARG-ST list may be missing from COMPs so long as it is present on a new list called GAP (a.k.a. SLASH):
(24) Argument Realization Principle - old version

A word's value for ARG-ST is $a \operatorname{b}$ (append b to a), where a is its value for SPR and b is its value for COMPS.
(25) Argument Realization Principle (revised) [p. 432]

[Note: the subtracted list may be null, in which case the value for GAP is null as well.]

from the first edition of this textbook:

(26) The GAP Principle [passes up values of GAP]

A well-formed phrase structure licensed by a headed rule other than the HeadFiller Rule (see below) must satisfy the following SD:

(27) Head-Filler Rule [terminates GAP passing]

$$
\left[\begin{array}{l}
\text { phrase } \\
\operatorname{GAP}\rangle
\end{array}\right] \rightarrow \quad\left[\begin{array}{l}
\text { phrase } \\
\operatorname{GAP}\rangle
\end{array}\right] \mathbf{H}\left[\begin{array}{l}
\text { phrase } \\
\text { FORM fin } \\
\operatorname{SPR}\rangle \\
\operatorname{GAP}\langle\boxed{1}\rangle
\end{array}\right]
$$

The second edition:

(28) The GAP Principle

A local subtree Φ satisfies the GAP Principle with respect to a headed rule ρ iff Φ satisfiesL

(29) Head-Filler Rule
$[$ phrase $] \rightarrow \quad 1\left[\operatorname{GAP}\rangle]\right.$ H HEAD $\left[\begin{array}{l}{\left[\begin{array}{l}\text { verb } \\ \text { FORM fin } \\ \\ \\ \operatorname{VAL}\left[\begin{array}{ll}\operatorname{SPR} & \rangle \\ \operatorname{COMPS}\rangle \\ \end{array}\right] \\ \operatorname{STOP}-\operatorname{GAP}\langle\Delta\rangle \\ \operatorname{GAP}\langle\boxed{1}\rangle\end{array}\right]}\end{array}\right]$

- Standard result: CSC
"This rule says that a phrase can consist of a head with a gap preceded by an expression that meets whatever requirements the head places on that gap."

The independent existence of "stop-gap" allows elements other than the filler to stop the propagation of "GAP". An example: "Tough"-adjectives like easy:

Cite as: David Pesetsky, course materials for 24.960 Syntactic Models, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]

(32) Subject Extraction Lexical Rule [!] [p. 442]

[^0]: Cite as: David Pesetsky, course materials for 24.960 Syntactic Models, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]

[^1]: Cite as: David Pesetsky, course materials for 24.960 Syntactic Models, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

