Class 5: Refined statistical models for phonotactic probability

(1) (Virtually) no restrictions on initial CV sequences:

Vowel	/p/	/t/	/k/
[i]	peel	teal	keel
[I]	pick	tick	kick
[e]	pale	tale	kale
[ع]	pen	ten	Ken
[æ]	pan	tan	can
[u]	pool	tool	cool
[v]	put	took	cook
[o]	poke	toke	coke
[0]	Paul	tall	call
[${ }^{\text {] }}$	puff	tough	cuff
[a]	pot	tot	cot
[ar]	pine	tine	kine
[av]	pout	tout	cow
[эІ]	poise	toys	coin
[ju]	puke	-	cute

(2) Relatively more restrictions on VC combinations:

Vowel	/p/	/t/	/k/
$[\mathrm{i}]$	leap	neat	leek
$[\mathrm{I}]$	lip	lit	lick
$[\mathrm{e}]$	rape	rate	rake
$[\varepsilon]$	pep	pet	peck
$[æ]$	rap	rat	rack
$[\mathrm{u}]$	coop	coot	kook
$[\overline{\mathrm{v}} \mathrm{]}$	-	put	book
$[\mathrm{o}]$	soap	coat	soak
$[\mathrm{\rho}]$	-	taught	walk
$[\Lambda]$	cup	cut	tuck
$[\mathrm{a}]$	top	tot	lock
$[\mathrm{ar}]$	ripe	right	like
$[\mathrm{av}]$	-	bout	-
$[\mathrm{r}]$	-	(a)droit	-
$[\mathrm{ju}]$	-	butte	puke

And compare also voiced:

Vowel	/b/	/d/	/g/
$[\mathrm{i}]$	grebe	lead	league
$[\mathrm{I}]$	bib	bid	big
$[\mathrm{e}]$	babe	fade	vague
$[\varepsilon]$	Deb	bed	beg
$[æ]$	tab	tad	tag
$[\mathrm{u}]$	tube	food	-
$[v]$	-	could	-
$[\mathrm{o}]$	robe	road	rogue
$[\supset]$	daub	laud	log
$[\Lambda]$	rub	bud	rug
$[\mathrm{a}]$	cob	cod	cog
$[\mathrm{ar}]$	bribe	ride	-
$[\mathrm{av}]$	-	loud	-
$[\mathrm{I}]$	-	void	-
$[\mathrm{ju}]$	cube	feud	fugue

(3) CV co-occurrence for voiced stops

Vowel	/b/	/d/	/g/
[i]	beep	deep	geek
[r]	bin	din	gill
[e]	bait	date	gait
[ε]	bet	deck	get
[æ]	back	Dan	gap
[u]	boon	dune	goon
[v]	book	-	good
[0]	boat	dote	goat
[$]$	ball	doll	gall
[${ }^{\text {] }}$	bun	done	gun
[a]	bot	dot	got
[ar]	buy	dine	guy
[av]	bout	doubt	gout
[эІ]	boy	doi(ly)	goi(ter)
[ju]	butte	-	(ar)gue

And after sonorants:

Vowel	/m/	/n/	/n/	/l/	/r/	/w/	/j/
[i]	meat	neat	-	leap	reap	weep	yeast
[I]	mitt	nip	-	lip	rip	whip	yip
[e]	mate	Nate	-	late	rate	wait	yay
[ε]	met	net	-	let	wreck	wet	yet
[æ]	mat	nap	-	lap	rap	wax	yak
[u]	moot	newt	-	lute	route	woo	you
[v]	Muslim	nook	-	look	rook	wood	Europe
[0]	moat	note	-	lope	rope	woke	yoke
[$]$	moss	naught	-	\log	Ross	walk	yawn
[${ }^{\text {] }}$	mutt	nut	-	luck	rut	what	young
[a]	mock	knock	-	lock	rock	wand	yard
[ar]	mine	nine	-	line	rhyme	whine	-
[av]	mouse	now	-	lout	route	wound	(yowl)
[эг]	moist	noise	-	loin	Roy	[ju]	- (yoink)

(4) Kessler \& Treiman (1997)

Pearson's χ^{2} : tests whether relative frequencies of events match predicted (theoretical) frequencies

- In this case: is observed onset/coda asymmetry significantly different from the predicted (equal) distribution?

$[\mathrm{k}]$	Onset	Coda
Observed	148	214
Predicted	181	181

(5) Calculation of χ^{2} :

$$
\chi^{2}=\sum \frac{(\text { Observed-Expected })^{2}}{\text { Expected }}
$$

So for the [k] example:

$$
\frac{(148-181)^{2}}{181}+\frac{(214-181)^{2}}{181}=2 \times \frac{33^{2}}{181}=12.033
$$

(Incidentally: for most uses, Fisher's Exact Test is actually a more honest test)
(6) Nosofsky's GCM:

Similarity of i to existing items $j=\sum e^{-D \cdot d_{i, j}}$
Where

- $d_{i, j}=$ "psychological distance" between i and j
- $\quad D$ is a parameter (set to 1 or 2)
- $e=2.718281828$
(7) Bailey and Hahn (2001): Adapting the GCM for neighborhood effects
- Similarity of items $d_{i, j}$ intuitively related to how differences they have
- How many of their phonemes differ (cat,cap > cat,tap)
- How important those differences are (cat, cap > cat, cup)
- Use string edit distance algorithm to calculate how many modifications are needed to transform one word into the other
- Use method devised by Broe (1993), Frisch (1996), and Frisch, Broe and Pierrehumbert (1997) to weight the relative cost of different modifications based on the similarity of the segments involved
- Also, want to let token frequency plays a role, but in a complex way: not only are low frequency words less important, but very high frequency words are also ignored
- Implementation: add a quadratic weighting term, to allow greater influence of mid-range items (parabola-shaped function)
Similarity of $i=\sum\left(A f_{j}{ }^{2}+B f_{j}+C\right) \cdot e^{-D \cdot d_{i, j}}$

