Class 5: Refined statistical models for phonotactic probability

(1) (Virtually) no restrictions on initial CV sequences:

Vowel	/p/	/t/	/k/
[i]	peel	teal	keel
[I]	pick	tick	kick
[e]	pale	tale	kale
[8]	pen	ten	Ken
[æ]	pan	tan	can
[u]	pool	tool	cool
[ʊ]	put	took	cook
[o]	poke	toke	coke
[c]	Paul	tall	call
$[\Lambda]$	puff	tough	cuff
[a]	pot	tot	cot
[aɪ]	pine	tine	kine
[av]	pout	tout	cow
[JI]	poise	toys	coin
[ju]	puke	_	cute

(2) Relatively more restrictions on VC combinations:

Vowel	/p/	/t/	/k/
[i]	leap	neat	leek
[I]	lip	lit	lick
[e]	rape	rate	rake
[8]	pep	pet	peck
[æ]	rap	rat	rack
[u]	coop	coot	kook
[ʊ]	—	put	book
[0]	soap	coat	soak
[c]	_	taught	walk
$[\Lambda]$	cup	cut	tuck
[a]	top	tot	lock
[aɪ]	ripe	right	like
[av]	_	bout	_
[JI]	—	(a)droit	
[ju]	_	butte	puke

And compare also voiced:

Vowel	/b/	/d/	/g/
[i]	grebe	lead	league
[I]	bib	bid	big
[e]	babe	fade	vague
[8]	Deb	bed	beg
[æ]	tab	tad	tag
[u]	tube	food	_
[ʊ]		could	_
[o]	robe	road	rogue
[c]	daub	laud	log
[Λ]	rub	bud	rug
[a]	cob	cod	cog
[aɪ]	bribe	ride	_
[av]		loud	_
[JI]		void	
[ju]	cube	feud	fugue

(3)	CV co-o	ccurre	nce for v	oiced st	ops
	Vowal	/h/	/d/	191	

Vowel	/b/	/d/	/g/
[i]	beep	deep	geek
[I]	bin	din	gill
[e]	bait	date	gait
[8]	bet	deck	get
[æ]	back	Dan	gap
[u]	boon	dune	goon
[ʊ]	book	_	good
[0]	boat	dote	goat
[ɔ]	ball	doll	gall
$[\Lambda]$	bun	done	gun
[a]	bot	dot	got
[aɪ]	buy	dine	guy
[av]	bout	doubt	gout
[JI]	boy	doi(ly)	goi(ter)
[ju]	butte	_	(ar)gue

And after sonorants:

Vowel	/m/	/n/	/ŋ/	/1/	/r/	/w/	/j/
[i]	meat	neat	—	leap	reap	weep	yeast
[I]	mitt	nip	—	lip	rip	whip	yip
[e]	mate	Nate	—	late	rate	wait	yay
[8]	met	net	_	let	wreck	wet	yet
[æ]	mat	nap	_	lap	rap	wax	yak
[u]	moot	newt	_	lute	route	W00	you
[ʊ]	Muslim	nook	_	look	rook	wood	Europe
[0]	moat	note	—	lope	rope	woke	yoke
[c]	moss	naught	_	log	Ross	walk	yawn
$[\Lambda]$	mutt	nut	_	luck	rut	what	young
[a]	mock	knock	_	lock	rock	wand	yard
[aɪ]	mine	nine	_	line	rhyme	whine	_
[av]	mouse	now	_	lout	route	wound	(yowl)
[JI]	moist	noise	—	loin	Roy	[ju]	— (yoink)

(4) Kessler & Treiman (1997)

Pearson's χ^2 : tests whether relative frequencies of events match predicted (theoretical) frequencies

• In this case: is observed onset/coda asymmetry significantly different from the predicted (equal) distribution?

[k]	Onset	Coda
Observed	148	214
Predicted	181	181

(5) Calculation of χ^2 :

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

So for the [k] example:

$$\frac{(148-181)^2}{181} + \frac{(214-181)^2}{181} = 2 \times \frac{33^2}{181} = 12.033$$

(Incidentally: for most uses, Fisher's Exact Test is actually a more honest test)

(6) Nosofsky's GCM:

Similarity of *i* to existing items $j = \sum e^{-D \cdot d_{i,j}}$

Where

- $d_{i,j}$ = "psychological distance" between *i* and *j*
- *D* is a parameter (set to 1 or 2)
- *e* = 2.718281828
- (7) Bailey and Hahn (2001): Adapting the GCM for neighborhood effects
 - Similarity of items $d_{i,j}$ intuitively related to how differences they have
 - How many of their phonemes differ (*cat,cap* > *cat,tap*)
 - How important those differences are (*cat*, *cap* > *cat*, *cup*)
 - Use *string edit distance* algorithm to calculate how many modifications are needed to transform one word into the other
 - Use method devised by Broe (1993), Frisch (1996), and Frisch, Broe and Pierrehumbert (1997) to weight the relative cost of different modifications based on the similarity of the segments involved
 - Also, want to let token frequency plays a role, but in a complex way: not only are low frequency words less important, but very high frequency words are also ignored
 - Implementation: add a quadratic weighting term, to allow greater influence of mid-range items (parabola-shaped function)

Similarity of $i = \sum (Af_j^2 + Bf_j + C) \cdot e^{-D \cdot d_{i,j}}$