24.964 Fall 2004
Modeling phonological learning

1

2

3)

4

®)

(6)

@)

(8)

Class 1: Introduction

Getting software
e Text editors

— AlphaX for Mac: http://www.maths.mq.edu.au/~steffen/Alpha/AlphaX/
— SciTE for Windows: http://scintilla.sourceforge.net/SciTEDownload.html

e Perl for Windows:
— http://www.activestate.com/Products/ActivePerl/

Navigating the command line (a few basics)

| Function | Unix | DOS
Change directories cd destination | cd destination
Go up one level cd .. cd ..
Print current directory pwd cd
List files in current directory | 1s dir
Display a text file more filename | type filename
Run a Perl program perl filename | perl filename

e More at: http://ist.uwaterloo.ca/ec/unix/comparison.html
hellol.pl
print "Hello world!\n";
hello2.pl

$greeting = "Hello world!";
print "$greeting\n";

hello2b.pl

$world = "Hello";
$hello = "world!";
print "$world $hello\n";

hello3.pl

$greeting[0] = "Hello";

$greeting[1] = "world!";

The following two lines do exactly the same thing
print "$greeting[0] $greeting(1]\n";

print "@greeting\n";

hello3b.pl

Q@greeting = ("Hello", "world");

The following two lines do exactly the same thing
print "$greeting[0] $greeting[1i]\n";

print "@greeting\n";

simplemath.pl

$x = 1;

print "The value of \$x is $x\n";
$x = $x + 2;

print "The value of \$x is $x\n";
$x = $x * 2;

print "The value of \$x is $x\n";

A. Albright
9 Sept 2004

http://www.maths.mq.edu.au/~steffen/Alpha/AlphaX/
http://scintilla.sourceforge.net/SciTEDownload.html
http://www.activestate.com/Products/ActivePerl/
http://ist.uwaterloo.ca/ec/unix/comparison.html

24.964 Modeling phonological learning—9 Sept 2004

$x = $x / 3;

print "The value of \$x is $x\n";
$x = $x - 1;

print "The value of \$x is $x\n";
$x++;

print "The value of \$x is $x\n";
$x--;

print "The value of \$x is $x\n";

(9) Concatenating text:
$greeting = "Hello" . " " . "world!";
(10) loopl.pl
A for loop from 1 to 10
for ($i = 1; $i < 11; $i++) {
print "$i\n";
}
(11) Syntax: for (initial state, condition, operation) { ...}
e Here, initial state is for $i to have value of 1
e Condition is to keep going as long as $i is less than 11
- x < ymeansxislessthany
— x <= ymeansXxisless than orequaltoy
— Similarly, x > y,x >= y for x greater than (or equal to) y
- x == ymeansxequalsy
e Each time we run the loop, we add one to $i ($i++)
e The stuff to do is between curly braces: { ...}
(12) hello4.pl

Ogreeting = ("Hello", "world!");
for ($i = 0; $i <= 1; $i++) {

print "$greeting[$i] ";

}
print "\n";
(13) hello5.pl
Qgreeting = ("Hello", "world!");
for ($1 = 0; $i <= $#greeting; $i++) {
print "$greeting[$il ";
}
print "\n";

(14) cv.pl

Qconsonants = (°p’,’t’,’k’,’b’,’d’,’g’,’£’,’s’,’z’,’m’,’n’,’1’,°r’);
Q@vowels = (’a’,’e’,’1i’,’0’,’u’);
Let’s also keep track of how many words we have generated
$number_of_words = 0;
Loop through consonants
for ($c = 0; $c <= $#consonants; $c++) {
Loop through vowels
for ($v = 0; $v <= $#vowels; $v++) {
Print out this CV combination
print "$consonants[$c]$vowels[$v]\n";
Add one to the number of words
$number_of_words++;
}
}

print "\nGenerated a total of $number_of_words words\n";

24.964 Modeling phonological learning—9 Sept 2004

(15)

(16)

17

(18)

cvev.pl

@COnSOnaDtS = ()p),)tl’Jk?’)b),ld},)g),lf)’)s)’lzl’?m),)ni’)l),IrJ);
@vowels = (’a’,’e’,’i’,’0’,’u’);

$number_of_words = 0;

for ($cl = 0; $c1 <= $#consonants; $ci++) {

for ($v1 = 0; $v1 <= $#vowels; $vi++) {
for ($c2 = 0; $c2<= $#consonants; $c2++) {
for ($v2 = 0; $v2<= $#vowels; $v2++) {
print "$consonants[$cl]$vowels[$vi]$consonants[$c2] $vowels[$v2]\n";
Add one to the number of words
$number_of_words++;

}
}

print "\nGenerated a total of $number_of_words words\n";
Control structures
e if (condition) { ...}
e if (condition) { ...}
else { ...}

e if (condition) { ...}
elsif (condition) { ...}

else { ...}
e unless (condition) { ...}
Conditions:
$x == $y xequalsy (numeric)
$x '= $y =xdoesn’'tequal y (numeric)

$x eq $y xequals y (strings)
$x ne $y x doesn’t equal y (strings)

(Also $x > $y, $x < $y, $x >= $y, $x <= $y for numbers)
cvev2.pl

Qconsonants = (°p’,’t’,’k’,’b’,’d’,’g’,’£’,’s’,’z’,’m’,’n’,’1’,°r’);
@vowels = (’a’,’e’,’i’,’0’,’u’);
$number_of_words = 0;
for ($c1 = 0; $c1 <= $#consonants; $ci++) {
for ($vl = 0; $v1 <= $#vowels; $vi++) {
for ($c2 = 0; $c2<= $#consonants; $c2++) {
for ($v2 = 0; $v2<= $#vowels; $v2++) {
if ($cl eq $c2) {
print "x$consonants[$cl]$vowels[$vi]$consonants [$c2] $vowels [$v2]\n";
} else {
print "$consonants[$cl]$vowels[$vi]$consonants[$c2] $vowels[$v2]\n";
Add one to the number of words
$number_of_words++;

}
}

print "\nGenerated $number_of_words legal words\n";

Pattern matching:

if ($mystring =~ /searchstring/) { ... }

24.964 Modeling phonological learning—9 Sept 2004

p. 4

19)

(20)

A few things to learn as you need them:

[ab] means “either a or b” (a, b); this can be expanded, so [abc] = either a, b, or ¢, etc...

[~al means “anything other than a”; [~ab] means “anything other than an a or a b”, etc. (set

negation)

a* means “any number of a’s (from 0 to infinity)” (nothing, a, aa, aaa, aaaa, aaaaa, ...

a+ means

2

“one or more a’s” (a, aa, aaa, aaaa, aaaaa, ...)

ab+ means “an a, followed by one or more b’s” (ab, abb, abbb, abbbb, ...)
(ab)+ means “one or more consecutive occurrences of ab” (ab, abab, ababab, abababab, ...)

a? means
~ameans
a$ means

“an optional a”
“an a at the beginning of the string”
“an a at the end of the string”

. (period) means “any character”

Also:

\w
\W
\s
\S
\d
\D
\b
\B

Matches a "word” character (alphanumeric plus ”_")
Matches a non-word character

Matches a whitespace character

Matches a non-whitespace character
Matches a digit character

Matches a non-digit character
Matches a word boundary

Matches a non-(word boundary)

More information can be found at:

if
if
if
if
if
if
if
if

)

http://www.wdvl.com/Authoring/Languages/Perl/PerlfortheWeb/perlintro2_tablel.html

http://etext.lib.virginia.edu/helpsheets/regex.html
http://www.perldoc.com/perl5.6/pod/perlre.html
patternmatch.pl

("blah" =~
("blah" =~
("blah" =~
("blah" =~
("blah" =~
("blah" =~
("blah" =~
("blah" =~

cvev3.pl

Qconsonants =
Qvowels = (’a’
$number_of_words = 0;

for ($c1 = 0; $c1 <= $#consonants; $ci++) {

for ($v1 =

/a/) { print ’/a/’ . "\n"; }

/~a/) { print ’/"a/’> . "\n"; }

/ba/) { print ’/ba/’ . "\n"; }

/b.a/) { print ’/b.a/’ . "\n"; }

/la-hl*/) { print ’/[a-h]l*/’ . "\n"; }

/"~ [a-h1*$/) { print ’/~[a-h]l*$/’ . "\n"; }
/la-m]l*/) { print ’/[a-m]*/> . "\n"; }

/" [a-m]*$/) { print ’/~[a-m]l*$/’ . "\n"; }

(,P,,’t’,’k’,’b’,’d’,7g,,)f,,,S’,’Z;,’m’,’n’,’l’,,r’);

dal 2392 A I997) .
,’e’,’i% %07 ,’u’);

0; $v1 <= $#vowels; $vi++) {

for ($c2 = 0; $c2<= $#consonants; $c2++) {
for ($v2 = 0; $v2<= $#vowels; $v2++) {

$word = "$consonants[$c1]$vowels[$vi]$consonants[$c2] $vowels [$v2]";

unless ($word =~ /$consonants[$cl].$consonants[$c1]/) {

}

print "$word\n";

http://www.wdvl.com/Authoring/Languages/Perl/PerlfortheWeb/perlintro2_table1.html
http://etext.lib.virginia.edu/helpsheets/regex.html
http://www.perldoc.com/perl5.6/pod/perlre.html

24.964 Modeling phonological learning—9 Sept 2004

21

(22)

(23)

cvevd.pl

Qconsonants = (’p’,’t’,’k’,’b’,’d’,’g’,’f’,’s’,’z’,’m’,’n’,’l’,’r’);
@vowels = (’a’,’e’,’i’,’0’,’u’);
$number_of_words = 0;
for ($cl = 0; $c1 <= $#consonants; $ci++) {
for ($vl1 = 0; $v1 <= $#vowels; $vi++) {
for ($c2 = 0; $c2<= $#consonants; $c2++) {
for ($v2 = 0; $v2<= $#vowels; $v2++) {
$word = "$consonants[$c1]$vowels[$vi]$consonants[$c2] $vowels [$v2]";
if ($word ="~ /$consonants[$cl].$consonants[$cl1]/) {
print "$word\tC1=C2\n";
} elsif ($word =~ /$vowels[$v1].$vowels[$vil/) {
print "$word\tV1i=V2\n";
} elsif ($word =~ /[pbmf]. [pbmf]l/) {
print "$word\tTwo labials\n";
} elsif ($word =~ /[iul$/) {
print "$word\tFinal high vowel\n";
} else { print "$word\n"; }

}
readfilel.pl

#Read a file, print its line to the screen.
$input_file = "sample.txt";
open (INFILE, $input_file) or die "The file $input_file could not be found\n";

Loop, continuing as long as lines can be read from the file
while ($line = <INFILE>)
{

$line_count++;

print "$line_count $line";

}

close INFILE;

What should this do? (and what is the problem?)
readfile3.pl

$input_file = "sample.txt";

$output_file = "sample-output.txt";

open (INFILE, $input_file) or die "The file $input_file couldn’t be found\n";
open (OUTFILE, ">$output_file") or die "The file $output_file couldn’t be written\n";

Loop, continuing as long as a line can be read successfully from the file
while ($line = <INFILE>)

{

$count = 0;

$lines++;

while ($line =~ m/[aeioul/) {

$count++;

}

print "Line $lines: $count vowels\n";
}

close INFILE;
close OUTFILE;

24.964 Modeling phonological learning—9 Sept 2004 p. 6

(24) Other useful operations

chomp ($x) removes newline (\n) from end of line

1c($x) converts $x to lower case

@fields = split(/\t/, $x) splits string $x into an array, using tab as a delimiter

($varl, $var2) = split(/\t/, $x) assigns split fields to different variables

$x =" s/search/replace/ searches $x for search and replaces with replace (1st instance only)
$x =" s/search/replace/g searches $x for search and replaces with replace (all instances)

(25) checkmath.pl

This script reads in a series of arithmetic statments,
and checks whether they are correct
It is extremely limited, in that it only handles statements with 2 operands

$input_file = "math.txt";
open (INFILE, $input_file) or die "Can’t open input file: $!\n";

$correct_answers = 0;
$incorrect_answers = 0;

CHECK_ANSWER :
while ($line = <INFILE>) {

chomp ($1line) ;
We’ll assume that statements have the form:
x OPERATION y = z

So, let’s first start by getting the left sides and result.
We can split at the equal sign (removing also any spaces around it
($operation, $given_answer) = split(/\s*=\sx*/,$line);

Now, parse out the operation, so we can check it. We want to split at a +, -, * or /
Since these are all "special" symbols in regular expression syntax,

we need to "protect" them by putting a backslash before each.

As before, we also include the spaces (\s*) as part of the delimiter

@operands = split(/\s*[\+\-*\/]\s*/, $operation);

if ($operation =~ /\+/) {
$operator = "plus";
$real_answer = $operands[0] + $operands[1i];
} elsif ($operation =~ /\-/) {
$operator = "minus";
$real_answer = $operands[0] - $operands[i];
} elsif ($operation =~ /*x/) {
$operator = "times";
$real_answer = $operands[0] * $operands[1i];
} elsif ($operation =~ /\//) {
$operator = "divided by";
$real_answer = $operands[0] / $operands[1i];
} else {
If we got here, there was no +, -, *, or / found
print "Error! The operation $operation was not found to have an operator\n";
next CHECK_ANSWER;

if ($real_answer == $given_answer) {
$correct = 1;
$correct_answers++;

} else {
$correct = 0;
$incorrect_answers++;

}

print "$operands[0] $operator $operands[1] is $real_answer\t";

24.964 Modeling phonological learning—9 Sept 2004 p.7

print "\t(The given answer of $given_answer is ";
unless ($correct) { print "NOT "; }
print "correct)\n";

We are now done with the file, and can calculate summary statistics.
print "\nTotal of $correct_answers correct answers, and $incorrect_answers incorrect answers.\n";
print "\t(Overall score: ".($correct_answers*100 / ($correct_answers+$incorrect_answers))." percent)\n";

(26) hepburn.pl

$input_file = "Japanese-ToConvert.txt";
open (INFILE, $input_file) or die "Warning! Can’t open input file: $!\n";

while ($line = <INFILE>) {
Crucial rule ordering: this needs to go first
$line =~ s/hu/fu/g;

The major difference is use of <y> after t,s,z
$line =~ s/ty/ch/g;

$line =~ s/sy/sh/g;

$line =~ s/zy/j/g;

Also, palatalization before i

$line =~ s/ti/chi/g;

$line =" s/si/shi/g;

$line =" s/zi/ji/g;

And assibilation of t before u

$line =~ s/tu/tsu/g;

print "$line";

