Learning alternations, cont.

24.964—Fall 2004
Modeling phonological learning

Class 12 (9 Dec, 2004)

Agenda items

- More on learning alternations
- Albright and Hayes (2002)
- Kruskal (1999)
- Course evals
- Guenther talk: 4:15,

Reminder: final projects

- Goal: lay out the issues, see where the problems lie
- Not intended to be polished, fully worked out proposals or programs
- Please get them to me by next Thursday (12/16)

What we saw last week

Bootstrapping: using knowledge of surface phonotactics to learn alternations (Tesar \& Prince 2004)

- E.g., [rat] ~ [radəs] in a language with final devoicing
- The intuition: given a choice between $/ \mathrm{rad} /$ and $/ \mathrm{rat} /$, the learner can use knowledge that FinDevoi is high ranked to choose /rad/
- The grammar already derives [rat] correctly from /rad/
- There is no way to derive [radəs] from /rat-as/
- Even when the grammar doesn't already work in the desired direction, it usually "works better" (desired output is a tied winner, rather than a loser)

What we saw last week

Bootstrapping, part 2: using knowledge of some alternations to infer other alternations (McCarthy, "Free rides")

- If you know /A/ \rightarrow [B] in some words, try making attributing all surface $[\mathrm{B}]$ to underlying / $\mathrm{A} /$
- Keep the results if it permits you to formulate a more restrictive grammar
- (Doesn't handle cases where you want /A/ but there's no restrictiveness payoff, or where you want to set up only SOME [B] as /A/)

Some issues with current OT approaches to alternations

Supervision: assumes that learner can

- Find pairs that exhibit alternations
- Apply morphology correctly, to test hypotheses about possible URs (Does /rat-əs/ yield [radəs]?)

Interdependence of phonology and morphology:
2 Not necessarily safe to assume that morphology has been fully learned correctly prior to learning phonology of alternations!

Some issues with current OT approaches to alternations

Non-incremental:

- Learner learns new grammar from scratch with each datum or hypothesized modification to URs

Some issues with current OT approaches to alternations

Limitations

- Scalability to multiple variants/multiple feature values/multiple possible URs not yet explored
- No story (yet) for alternations not motivated by phonotactics
- Derived environment phonology
- Sychronically arbitrary (?) alternations
- Not equipped to handle alternations that change the segment count (insertion, deletion, etc.)

Goals for today

- Look at an approach that tries to take on the interdependence of morphology and phonology
- Brief intro to a procedure that can get past the segment count limitation (string edit distance)

Minimal Generalization Model

Recall Tesar \& Prince:

- Learners are given pairs of forms that stand in (potentially) any morphological relation
- Morphology is known; learner's task is to make sure the phonological form can be derived using a single UR

Minimal Generalization Model

A different approach: Albright \& Hayes (2002)

- Learn phonology as part of the process of learning morphology
- Learner's task is to develop a clean analysis of morphology; learning phonology helps improves accuracy of the analysis

Minimal Generalization Model

Input to the learner:

- Pairs of forms that in a particular morphological relation
- List of sequences known to be surface illegal

Minimal Generalization Model

E.g., German sg ~ pl

- Pairs:

pi:p	pi:pə	'peep'
voRt	voRtə	'word'
ftRart	ftRasta	'fight'
veRk	vعRkə	'work'
lo:p	lo:ba	'praise'
moRt	moRdə	'murder'
gRa:t	gRa:də	'degree’
art	aıdə	'oath'
beRk	b $¢$ Rg ${ }^{\text {a }}$	'mountain'

- Illegal sequences:
*b\#, *d\#, *g\#, ...

Minimal Generalization Model

E.g., Or, English pres ~ past

- Pairs:

du	did
se	s d

go went
get gat
no nu
mis mist
pres prest
læf læft

- Illegal sequences:
pd, ${ }^{ t d}$, *kd, *dd, *sd, *bt, *dt, *gt, ...

Minimal Generalization Model

Step 1: Try to learn some morphology, by figuring out the changes

- Factor pairs into change ($\mathrm{A} \rightarrow \mathrm{B}$) and context (C _ D)
- E.g.,

$\mathrm{u} \rightarrow \mathrm{id}$	$/ \mathrm{d}_{-}$
$\mathrm{e} \rightarrow \varepsilon \mathrm{d}$	$/ \mathrm{s}_{-}$
$\mathrm{go} \rightarrow \mathrm{w} \varepsilon \mathrm{nt}$	
$\varepsilon \rightarrow \mathrm{a}$	$/ \mathrm{g}_{-} \mathrm{t}$
$\mathrm{o} \rightarrow \mathrm{u}$	$/ \mathrm{n}_{-}$
$\varnothing \rightarrow \mathrm{t}$	$/ \mathrm{mis}_{-}$
$\varnothing \rightarrow \mathrm{t}$	$/ \mathrm{pres}_{-}$
$\varnothing \rightarrow \mathrm{t}$	$/ \mathrm{l}_{-}$

Minimal Generalization Model

Finding the change and the context for word-specific changes:

- Note that this is limited to a single contiguous change (A \rightarrow B); can't handle two simultaneous changes

Minimal Generalization Model

Step 2: Generalization (but what to compare with what?)

- Restricting search space with a linguistic principle: locality

$\varnothing \rightarrow \mathrm{t}$	/	m	I	s	-
$\varnothing \rightarrow \mathrm{t}$	/	pr	$\mathrm{\varepsilon}$	s	-
					$\left[\begin{array}{l}+ \text { syl } \\ + \text { voi } \\ + \text { +son } \\ - \text { low } \\ - \text { bk } \\ - \text { tns } \\ - \text { rnd }\end{array}\right]$

Minimal Generalization Model

Features of generalization scheme:

- "Myopic" description language: fully specified segments adjacent to the change, classes of segments farther out, free variables at edge
- Minimal generalization: retain all shared feature values in featural term

Minimal Generalization Model

Iterative generalization:

Minimal Generalization Model

Rule evaluation:

- Scope of a rule $=$ number of forms that meets its structural description
- I.e., words containing CAD in input
- Hits, or positive examples $=$ number of forms that it correctly derives
- I.e., words containing CAD in input, and CBD in output
- Reliability $=($ hits $/$ scope $)$

Minimal Generalization Model

Examples:

- Suffixing - t after voiceless consonants works quite well in general, but there are some exceptions
- think, take, eat, teach, etc.
- want, start, wait, etc.
- Reliability $=\frac{\# \text { of vcls-final vbs }- \text { (}[\mathrm{t}]-\mathrm{final} \mathrm{vbs}+\text { vcls-final irregs) }}{\# \text { of vcls-final vbs }}$
- Suffixed - t after voiceless fricatives works exceptionlessly
- miss, press, laugh, etc.
- No irregs end in voiceless-final frics
- Reliability $=\frac{\# \text { of vcls-fric final vbs }}{\# \text { of vcls-fric final vbs }}=1$

Minimal Generalization Model

Comparing generalizations of different sizes:

- Affix - t after [s], after [s, $\left.\int\right]$, and after [f, $\left.\theta, \mathrm{s}, \mathrm{f}\right]$ all work perfectly
- No irregulars among any subset of voiceless frics
- Intuitively, the more striking fact is lack of irregs after [f, $\left.\theta, \mathrm{s}, \int\right]$, since it's more general
- Confidence adjustments;
- Reliability ratios are adjusted downwards, using statistical adjustment that compensates for small numbers
- E.g., $2 / 2=.57,5 / 5=.83,20 / 20=.95,100 / 100=.99$

Minimal Generalization Model

Confidence limits

Minimal Generalization Model

Learning phonology to improve confidence

- Exceptions to suffixing -d after vcd segments:
- come, give, find, leave, etc.
- need, decide, avoid, etc.
- Reliability $=\frac{\# \text { of vcd-final vbs }- \text { ([d]-final vbs }+ \text { vcd-final irregs) }}{\# \text { of vcd-final vbs }}$
- The latter batch has a principled explanation-namely, phonology

Minimal Generalization Model

Path to phonological rules:

- After comparing (hug, hugged) and (rub, rubbed), the learner knows - d can be affixed after voiced stops
- When the learner encounters (need, needed), it treats the pair as a $\varnothing \rightarrow$ әd rule

Minimal Generalization Model

Path to phonological rules:

- However, need also meets the structural description of \varnothing \rightarrow d / vcd stop _\#, so its reliability must be updated
- Try applying $\varnothing \rightarrow \mathrm{d} /$ vcd stop _ \# to need, yielding incorrect *[nidd]
- Scan *[nidd] for surface illegal sequences (here, *[dd]
- Could also just run /nid+d/ through grammar and see if faithful candidate is eliminated
- Posit phonological rule: /dd/ \rightarrow [dəd]

Minimal Generalization Model

Phonological rules can improve morphological confidence

- Exceptions to suffixing -d after vcd segments:
- come, give, find, leave, etc.
- need, decide, avoid, etc.
- Reliability $=\frac{\text { \# of vcd-final vbs }-(\text { vcd-final irregs }+[d]-\text { final vbs })}{\# \text { of vcd-final vbs }}$

Minimal Generalization Model

Phonological rules can improve morphological confidence

- Exceptions to suffixing -d after vcd segments:
- come, give, find, leave, etc.
- need, decide, avoid, etc.
- Reliability $=\frac{\text { \# of vcd-final vbs }- \text { (vcd-final irregs) }}{\# \text { of vcd-final vbs }}$

Minimal Generalization Model

Error-driven learning

- In this case, errors are generated in the course of evaluating morphological generalizations
- (What generates the errors in Tesar \& Prince's model?)

Minimal Generalization Model

What this procedure won't get you:

- /pd/ \rightarrow [pt], etc. (progressive devoicing)
- Reason: in order to learn this, we would need to generate errors like ${ }^{*}\left[\mathrm{~d}_{3} \wedge \mathrm{mpd}\right]$
- In order to generate $*\left[\widehat{d}_{3} \wedge m p d\right]$, we need a rule suffixing - d after voiceless consonants
- However, -d only occurs after voiced consonants (for precisely this reason). Minimal generalization will only yield $\varnothing \rightarrow$ d / [+voi] _\#
- All -d examples share [+voi])

The problem: complementary distribution

Minimal Generalization Model

Overcoming complementary distribution

- Try to identify "competing" changes ($\mathrm{A} \rightarrow \mathrm{B}, \mathrm{A} \rightarrow \mathrm{B}^{\prime}, \ldots$)
- When two changes share the same input (A), clone their contexts and see whether any phonological rules can be found
- Example: given both $\varnothing \rightarrow t$ and $\varnothing \rightarrow d$, try creating $\varnothing \rightarrow d$ rules in the voiceless contexts (and vice versa)
- E.g., $\varnothing \rightarrow$ d / vcls fric _\#
- Generates errors *[misd], *[presd], *[læfd], etc.
- Yields rules devoicing after [s], [f], ...

Minimal Generalization Model

Another problem that one often encounters

- Exceptional words that behave as if they have the opposite value of one of their features
- Kenstowicz and Kisseberth (1977): "input exceptions"
- Examples in English: burnt, dwelt
- These could lead the learner to conclude the -t occurs after any consonant, even though most examples are after voiceless consonants
- Solution (details omitted): compare the reliability of bigger generalizations against the reliability of their subsets; if most of the positive examples (hits) are from a particular subset, then you must penalize the broader generalization

Minimal Generalization Model

Summary

- Similar in spirit to Tesar \& Prince (2004), in that previous knowledge of phonotactics is employed to identify errors that might be attributed to phonology
- Unlike Tesar \& Prince's proposal, it is embedded in a more general model of learning morphological relations
- Errors are generated in the course of trying to find cleaner morphological generalizations (fewer exceptions)
- Contains mechanisms for handling pairs that cannot be explained phonotactically
\diamond Rule format allows any alternation to be expressed (not just those provided by universal constraint inventory)
\diamond Word-specific rules provides mechanism for handling idiosyncratic exceptions

Minimal Generalization Model

This can get the phonological rules, but what about deciding URs of individual lexical items?

- Same intuition as Tesar \& Prince (2004): derivations work in one direction, but not the opposite direction
- E.g., /beьg/ \rightarrow [b\&ьk] can be derived by devoicing (since *[bєьg] would be surface illegal); /bєьk+ə/ \rightarrow [bєьgə] can't be derived phonologically, since *[b\&skə] is incorrect, but legal

Minimal Generalization Model

Some problems with the model

- Representation of phonological "rules" is clunky
- No a priori assumptions about fixes (is this good or bad?)
- Environments are limited be generalization scheme to local contexts
- More recent work attempting to relax this, and integrate resulting generalizations into an OT-based grammar, using the GLA
- Albright \& Hayes (2004) Modeling productivity with the Gradual Learning Algorithm

Minimal Generalization Model

Some problems with the model

- No proofs concerning algorithmic difficulty
- Can't handle morphological relations involving multiple changes

String alignment

The problem: how do you know what stays the same, and what changes?

- Example: Spanish

v	e	l	g	o			'I come' v
je	n		e			'he comes'	
v	e	n		i	r		'to come'
v	e	n	d		r	e	'I will come'

- Before you can even begin to generalize about or explain a change, you have to figure out what the change actually is
(How are correspondences usually calculated within OT?)

String alignment

A useful technique: string alignment by string edit/levenshtein distance

- Intuition: alignment can be calculated by figuring out the smallest number of changes needed to change one string to another
- If two strings share material, don't need to change it
- Unshared material must be deleted, inserted, or substituted

String alignment

Equivalence of alignments and operations

- Leave v unchanged

v	e	n	-	i	r
V	e	η	g	o	-

- Leave e unchanged
- Substitute n by η
- Insert g
- Substitute i by o
- Delete r

String alignment

The task: analyze correspondence as a sequence of substitutions, insertions, and deletions

- In practice, we usually want the shortest sequence of alignments/changes
- That is, the best alignment

String alignment

Chart to calculate alignment
out $\downarrow /$ in \rightarrow

		v	e	n	i
	r				
v					
e					
η					
g					
o					

String alignment

Ideal path (one of many)

Substitute (unchanged or with modification)
\longrightarrow Delete from input

Insert in output

String alignment

Using corners to calculate substitution and indel costs

String alignment

Using corners to calculate substitution and indel costs

String alignment

Using corners to calculate substitution and indel costs

String alignment

Using corners to calculate substitution and indel costs

String alignment

Using corners to calculate substitution and indel costs

String alignment

Using corners to calculate substitution and indel costs

		V	e	n	i	r
	0	0.5	1.0	1.5	2.0	2.5
V	0.5	$\begin{gathered} 0 \\ . \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ . \\ \hline \end{gathered}$	$\begin{array}{c\|c} 1 & .5 \\ . & \end{array}$	$\begin{array}{c\|} 1 \\ 5 \\ \hline \end{array}$	$\begin{gathered} 1 \\ . \\ \hline \end{gathered}$
e	1.0	$\begin{gathered} 1 \\ 5 \end{gathered}$	$\begin{array}{rl} 0 & .5 \\ .5 \end{array}$	$\begin{aligned} & 1 \\ & . \\ & . \end{aligned}$	$\begin{array}{ll} 1 & .5 \\ .5 \end{array}$	$\begin{gathered} 1 \\ .5 \end{gathered}$
7	1.5	$\begin{gathered} 1 \\ . \\ 5 \end{gathered}$	$\begin{gathered} 1 \\ .5 \end{gathered}$	$\begin{gathered} 1 \\ 5 \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered} 1 \\ . \\ . \end{gathered}\right.$	$\begin{gathered} 1 \\ .5 \end{gathered}$
9	2.0	$\begin{array}{\|c\|c} 1 \\ \hline & .5 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & .5 \end{aligned}$	$\begin{aligned} & 1 \\ & . \\ & \hline \end{aligned}$	$\begin{array}{cc} 1 & .5 \\ . & \end{array}$	$\begin{gathered} 1 \\ .5 \end{gathered}$
\bigcirc	2.5	$\begin{gathered} 1 \\ . \\ 5 \end{gathered}$	$\begin{aligned} & 1 \\ & . \\ & \hline \end{aligned}$	$\begin{array}{c:c} 1 & .5 \\ . & \\ \hline \end{array}$	$\begin{array}{ll} 1 & .5 \\ . & \end{array}$	$\begin{gathered} 1 \\ . \\ \hline \end{gathered}$

String alignment

Center value is minimum of corners

		V	e	n	i	r
	0	0.5	1.0	1.5	2.0	2.5
V	0.5	$\begin{array}{c:c} 0 & .5 \\ .5 & 0 \end{array}$	$\begin{array}{ll} 1 & .5 \\ .5 \end{array}$			$\begin{array}{cc} 1 & .5 \\ .5 \end{array}$
e	1.0	$\begin{gathered} 1 \\ . \\ .5 \end{gathered}$	0.5	$\begin{gathered} 1 \\ 5 \\ \hline \end{gathered}$	$1 . .5$	$\begin{gathered} 1.5 \\ .5 \end{gathered}$
1	1.5	$\begin{aligned} & 1.5 \\ & .5 \end{aligned}$	$\begin{aligned} & 1 \\ & \hline \end{aligned}$	1.5		$\begin{aligned} & 1 \\ & .5 \end{aligned}$
9	2.0	1 . 5	1.5	1.5	$1 . .5$	$\begin{gathered} 1 \\ . \\ \hline \end{gathered}$
O	2.5	$\begin{array}{cc} 1 & .5 \\ . & \end{array}$	$\begin{aligned} & 1.5 \\ & 5 \end{aligned}$	$\begin{gathered} 1 \\ 5 \\ \hline \end{gathered}$	$\begin{array}{c:} 1 \\ . \\ . \end{array}$	$\begin{aligned} & 1 \\ & 5 \\ & \hline \end{aligned}$

Substitute (unchanged or with modification)

Delete from input

Insert in output

subst	del
cost	cost
insert	
cost	

String alignment

Center value is minimum of corners

		V	e	n	i	r
	0	0.5	1.0	1.5	2.0	2.5
V	0.5	$\begin{array}{c:c} 0 & .5 \\ .5 & 0 \end{array}$	$\begin{array}{l:l} 1 & .5 \\ \hline & .5 \\ \hline \end{array}$	$\begin{array}{c:c} 1 & .5 \\ .5 \end{array}$		$\begin{array}{cc} 1 & .5 \\ .5 \end{array}$
e	1.0	$\begin{gathered} 1 \\ . \\ .5 \end{gathered}$		$\begin{gathered} 1 \\ .5 \\ \hline \end{gathered}$	$1 . .5$	$\begin{gathered} 1.5 \\ .5 \end{gathered}$
\square	1.5	$\begin{gathered} 1.5 \\ .5 \end{gathered}$	1.5	1.5		$\begin{array}{ll} \hline 1.5 \\ .5 \end{array}$
9	2.0	1 . 5		1.5	$1 . .5$	$\begin{gathered} 1 \\ .5 \end{gathered}$
O	2.5	$\begin{array}{cc} 1 & .5 \\ . & \end{array}$	$\begin{aligned} & 1 \\ & . \\ & . \end{aligned}$	$\begin{aligned} & 1.5 \\ & .5 \end{aligned}$	$\begin{array}{c:} 1 \\ . \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & .5 \\ & . \end{aligned}$

Substitute (unchanged or with modification)

Delete from input

Insert in output

subst	del
cost	cost
insert	
cost	

String alignment

Center value is minimum of corners

		V	e	n	i	r
	0	0.5	1.0	1.5	2.	2.
V	0.5	$\begin{array}{cc} 0 & .5 \\ .5 & 0 \end{array}$		$\begin{array}{l:l} 1 & . \\ 5 & 1 \end{array}$	$\begin{gathered} 1 \\ . \\ \hline \end{gathered}$	$\begin{array}{ll} 1 . \\ 5 & 2 \end{array}$
e	1.0	$\begin{array}{ll} 1 & .5 \\ .5 \end{array}$				$\begin{gathered} 1 \\ .5 \end{gathered}$
1	1.5	$\begin{aligned} & 1.5 \\ & .5 \\ & \hline \end{aligned}$		$1 \ldots$	1	$\left\{\begin{array}{l} 1 \\ .5 \end{array}\right.$
9	2.0	$\begin{array}{c\|} \hline 1 \\ . \\ \hline \end{array}$		1	1	$\begin{gathered} 1 \\ .5 \end{gathered}$
O	2.5	$\begin{array}{ll} \hline 1 & .5 \\ .5 \end{array}$		$1 .$	$\begin{gathered} 1 \\ . \\ . \end{gathered}$	$\begin{gathered} 1 \\ . \\ \hline \end{gathered}$

Substitute (unchanged or with modification)

Delete from input

Insert in output

subst	del
cost	cost
insert	
cost	

String alignment

Center value is minimum of corners

Substitute (unchanged or with modification)

Delete from input

Insert in output

subst	del
cost	cost
insert	
cost	

String alignment

Paths with smallest costs

Substitute (unchanged or with modification)

Delete from input

Insert in output

subst	del
cost	cost
insert	--------
cost	

String alignment

Using more sensible substitution costs, based on phonetic similarity

Substitute (unchanged
or with modification)
\longrightarrow Delete from input

Insert in output

subst	del
cost	cost
insert	$-\cdots-----$
cost	

(Tedious to count by hand; remaining values left to your imagination...)

