Learning alternations, cont.

24.964—Fall 2004
Modeling phonological learning

Class 12 (9 Dec, 2004)

24.964—Class 12 9 Dec, 2004

Agenda items

e More on learning alternations

o Albright and Hayes (2002)
o Kruskal (1999)

e Course evals

e Guenther talk: 4:15,

24.964—Class 12 9 Dec, 2004

Reminder: final projects

e Goal: lay out the issues, see where the problems lie

e Not intended to be polished, fully worked out proposals
Or programs

e Please get them to me by next Thursday (12/16)

24.964—Class 12 9 Dec, 2004

What we saw last week

Bootstrapping: using knowledge of surface phonotactics to
learn alternations (Tesar & Prince 2004)

e E.g., [rat] ~ [rados] in a language with final devoicing

e The intuition: given a choice between /rad/ and /rat/, the
learner can use knowledge that FINDEVOTI is high ranked
to choose /rad/

o The grammar already derives [rat] correctly from /rad/
o There is no way to derive [rados] from /rat-os/

e Even when the grammar doesn't already work in the
desired direction, it usually “works better” (desired output
is a tied winner, rather than a loser)

24.964—Class 12 9 Dec, 2004

What we saw last week

Bootstrapping, part 2: using knowledge of some
alternations to infer other alternations (McCarthy, “Free
rides”)

e Ifyouknow /A/ — [B] in some words, try making attributing
all surface [B] to underlying /A/

e Keep the results if it permits you to formulate a more
restrictive grammar

e (Doesn’'t handle cases where you want /A/ but there’s no

restrictiveness payoff, or where you want to set up only
SOME [B] as /A/)

24.964—Class 12 9 Dec, 2004
Some issues with current OT approaches to
alternations

Supervision: assumes that learner can

e Find pairs that exhibit alternations

e Apply morphology correctly, to test hypotheses about
possible URs (Does /rat-os/ yield [rados]?)

Interdependence of phonology and morphology:

—INOt necessarily safe to assume that morphology has been
fully learned correctly prior to learning phonology of
alternations!

24.964—Class 12 9 Dec, 2004
Some issues with current OT approaches to
alternations

Non-incremental:

e Learnerlearns new grammar from scratch with each datum
or hypothesized modification to URs

24.964—Class 12 9 Dec, 2004
Some issues with current OT approaches to
alternations

Limitations

e Scalability to multiple variants/multiple feature values/multiple
possible URs not yet explored

e No story (yet) for alternations not motivated by phonotactics
o Derived environment phonology

o Sychronically arbitrary (?) alternations

e Not equipped to handle alternations that change the
segment count (insertion, deletion, etc.)

24.964—Class 12 9 Dec, 2004

Goals for today

e Lookatan approach that tries to take on the interdependence
of morphology and phonology

e Brief intro to a procedure that can get past the segment
count limitation (string edit distance)

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Recall Tesar & Prince:

e Learners are given pairs of forms that stand in (potentially)
any morphological relation

e Morphology is known; learner’s task is to make sure the
phonological form can be derived using a single UR

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

A different approach: Albright & Hayes (2002)

e Learn phonology as part of the process of learning morphology

e Learner’s taskis to develop a clean analysis of morphology;
learning phonology helps improves accuracy of the analysis

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Input to the learner:

e Pairs of forms that in a particular morphological relation

e List of sequences known to be surface illegal

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

E.g., German sg ~ pl

e Pairs:
pi:p pi:po ‘peep’
voRt voRto ‘word’
[tRart [tRarto ‘fight’
veRk veRko ‘work’
lo:p lo:bo ‘praise’
moRt moRdo ‘murder’
gRait gRaido ‘degree’
art ardo ‘oath’
beRk beRgo ‘mountain’

e Illegal sequences:
*b#, *d#, *g#, ...

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

E.g., Or, English pres ~ past

e Pairs:

du did
se sed
g0 went
get gat
no nu
mis mist
pres prest
leef leeft

e Illegal sequences:
*pd, *td, *kd, *dd, *sd, *bt, *dt, *gt, ...

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Step 1: Try to learn some morphology, by figuring out the
changes

e Factor pairs into change (A — B) and context (C __ D)

o E.g,
u—1d /d
e —ed /s
g0 — went
£— a /g _t
0—u /n
D —t [mis
D —t | pres

J—t [leef

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Finding the change and the context for word-specific
changes:

i
B
H
=

1

— b=

e Note that this is limited to a single contiguous change (A
— B); can’t handle two simultaneous changes

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Step 2: Generalization (but what to compare with what?)

e Restricting search space with a linguistic principle: locality

J—t [/ m I S —
b—t [pr € S _
+syl
+Vvoi
+son
g—t | X —low s —
—bk
—1tns
—rnd

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Features of generalization scheme:

e “Myopic” description language: fully specified segments
adjacent to the change, classes of segments farther out,
free variables at edge

e Minimal generalization: retain all shared feature values
in featural term

A B/ C - Dy
+ A B/ C _ D,

=A B/XC C_DD Y

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

[terative generalization:

miss press
D —tlLels_# laugh
@ —t/vclsfric _ # jump

T —

& — t/ vcls cons —#

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Rule evaluation:

e Scope of arule =number of forms that meets its structural
description

o l.e., words containing CAD in input

e Hits, or positive examples = number of forms that it
correctly derives

o l.e., words containing CAD in input, and CBD in output

e Reliability = (hits / scope)

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Examples:

e Suffixing -t after voiceless consonants works quite well in
general, but there are some exceptions

o think, take, eat, teach, etc.

o want, start, walit, etc.
of vcls-final vbs — ([t]-final vbs + vcls-final irregs)
of vcls-final vbs

o Reliability =

e Suffixed -t after voiceless fricatives works exceptionlessly

o miss, press, laugh, etc.
o No irregs end in voiceless-final frics

s hility — #ofvcls-fric final vbs _
o Reliability = # of vcls-fric final vbs 1

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Comparing generalizations of different sizes:
o Affix -t after [s], after [s, [], and after [f, 6, s, [] all work
perfectly

o No irregulars among any subset of voiceless frics

e Intuitively, the more striking fact is lack of irregs after [f,
0, s, [1, since it’s more general

e Confidence adjustments;

o Reliability ratios are adjusted downwards, using statistical
adjustment that compensates for small numbers
o E.g.,,2/2=.57,5/5=.83,20/20=.95,100/100 = .99

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Confidence limits

1
¢ 0.8
3
@)
= 0.6
)
04 \ \ \ \
0 10 20 30 40) 50

Number of observations

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Learning phonology to improve confidence

e Exceptions to suffixing -d after vcd segments:

o come, give, find, leave, etc.

o need, decide, avoid, etc.
of vcd-final vbs — ([d]-final vbs + vcd-final irregs)
of vcd-final vbs

o Reliability =

e The latter batch has a principled explanation—namely;,
phonology

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Path to phonological rules:

e After comparing (hug, hugged) and (rub, rubbed), the
learner knows -d can be affixed after voiced stops

e When the learner encounters (need, needed), it treats the
pair as a & — od rule

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Path to phonological rules:

e However, need also meets the structural description of &
— d / vcd stop __#, so its reliability must be updated

e Try applying @ — d / vcd stop _ # to need, yielding
incorrect *[nidd]

e Scan *[nidd] for surface illegal sequences (here, *[dd]

o Could also just run /nid+d/ through grammar and see
if faithful candidate is eliminated

e Posit phonological rule: /dd/ — [dad]

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Phonological rules can improve morphological confidence

e Exceptions to suffixing -d after vcd segments:

o come, give, find, leave, etc.
o need, decide, avoid, etc.

. 114, # 0f ved-final vbs — (ved-final irregs 4 [d]-final vbs)
o Reliability = # of vcd-final vbs

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Phonological rules can improve morphological confidence

e Exceptions to suffixing -d after vcd segments:

o come, give, find, leave, etc.
o need, decide, avoid, etc.

. 1:1:.. _ #o0fvcd-final vbs — (vcd-final irregs)
© Rehablhty - # of vcd-final vbs

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Error-driven learning

e In this case, errors are generated in the course of evaluating
morphological generalizations

e (What generates the errors in Tesar & Prince’s model?)

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model
What this procedure won't get you:
e /pd/ — [pt], etc. (progressive devoicing)

e Reason: in order to learn this, we would need to generate
errors like *[dzampd]

e In order to generate *[ci%Ampd], we need a rule suffixing
-d after voiceless consonants

e However, -d only occurs after voiced consonants (for
precisely this reason). Minimal generalization will only
yield @ — d / [+voi] _ #

o All -d examples share [+voi])

The problem: complementary distribution

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Overcoming complementary distribution

e Try to identify “competing” changes (A — B,A — B/, ...)

e When two changes share the same input (A), clone their

contexts and see whether any phonological rules can be
found

e Example: given both & — tand & — d, try creating @ — d
rules in the voiceless contexts (and vice versa)

o E.g., @ — d/vclsfric _ #
o Generates errors *[misd], *[presd], *[leefd], etc.
o Yields rules devoicing after [s], [f], ...

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Another problem that one often encounters

e Exceptional words that behave as if they have the opposite
value of one of their features

e Kenstowicz and Kisseberth (1977): “input exceptions”

e Examples in English: burnt, dwelt

o These could lead the learner to conclude the -t occurs
after any consonant, even though most examples are
after voiceless consonants

e Solution (details omitted): compare the reliability of bigger
generalizations against the reliability of their subsets; if
most of the positive examples (hits) are from a particular
subset, then you must penalize the broader generalization

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Summary

e Similar in spirit to Tesar & Prince (2004), in that previous
knowledge of phonotactics is employed to identify errors
that might be attributed to phonology

e Unlike Tesar & Prince’s proposal, it is embedded in a more
general model of learning morphological relations

o Errors are generated in the course of trying to find
cleaner morphological generalizations (fewer exceptions)
o Contains mechanisms for handling pairs that cannot
be explained phonotactically
¢ Rule format allows any alternation to be expressed
(not just those provided by universal constraint inventory)
¢ Word-specific rules provides mechanism for handling
idiosyncratic exceptions

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

This can get the phonological rules, but what about
deciding URs of individual lexical items?

e Same intuition as Tesar & Prince (2004): derivations work
in one direction, but not the opposite direction

e E.g., /besg/ — [besk] can be derived by devoicing (since
*[bepg] would be surface illegal); /besk+o/ — [besgo]
can’'t be derived phonologically, since *[begko] is incorrect,
but legal

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Some problems with the model

e Representation of phonological “rules” is clunky
e No a priori assumptions about fixes (is this good or bad?)

e Environments are limited be generalization scheme to
local contexts

o More recent work attempting to relax this, and integrate
resulting generalizations into an OT-based grammar,
using the GLA

o Albright & Hayes (2004) Modeling productivity with the
Gradual Learning Algorithm

http://www.linguistics.ucla.edu/people/hayes/papers/AlbrightHayesModelingProductivityWithGLA.pdf
http://www.linguistics.ucla.edu/people/hayes/papers/AlbrightHayesModelingProductivityWithGLA.pdf

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Some problems with the model

e No proofs concerning algorithmic difficulty

e Can’t handle morphological relations involving multiple
changes

24.964—Class 12 9 Dec, 2004

String alignment

The problem: how do you know what stays the same, and
what changes?

e Example: Spanish

Vv € 13 g o ‘I come’

vV je n e ‘he comes’
V e n i T ‘to come’

v e n d r e ‘Twillcome

e Before you can even begin to generalize about or explain
a change, you have to figure out what the change actually
is

(How are correspondences usually calculated within OT?)

24.964—Class 12 9 Dec, 2004

String alignment

A useful technique: string alignment by string
edit/levenshtein distance

e Intuition: alignment can be calculated by figuring out the

smallest number of changes needed to change one string
to another

o If two strings share material, don't need to change it
o Unshared material must be deleted, inserted, or substituted

24.964—Class 12 9 Dec, 2004

String alignment

Equivalence of alighments and operations

e Leave v unchanged

Vv e n — r
v e 5 8§ 0 — e Leave e unchanged
e Substitute n by g
Vv e n 1 r e Insertg
v e 5 g \ o e Substitute i by o

e Deleter

24.964—Class 12 9 Dec, 2004

String alignment

The task: analyze correspondence as a sequence of
substitutions, insertions, and deletions

e In practice, we usually want the shortest sequence of
alignments/changes

e That is, the bestalignment

String alignment

Chart to calculate alignment

out | /in —

v) e | n|i]|r

O @ &S |0 |

String alignment

Ideal path (one of many)

out | /in —

n| i|r
v = Substitute (unchanged
or with modification)

——JPp» Delete from input

¢ Insert in output

O @ 8 |0 <

String alignment

Using corners to calculate substitution and indel costs

out | /in —

v e n 1 r Substitute (unchanged
0| 0.5 1.0 1.5 2.0 2.5 or with modification)
V| o.5 V77 T T T T)
—— Delete from input
e | 1.0| 7y T i oy
¢ Insert in output
1:] T e e I
------------------------------ subst del
g 2.0 cost cost
______________________________ insert |
O | 2.5 cost

String alignment

Using corners to calculate substitution and indel costs

out | /in —

\ < n 1 r Substitute (unchanged
0| 0.5 1.0 1.5 2.0 2.5 or with modification)
.5
VvV 0.5 | 7] T v vy T)
—— Delete from input
e | 1.0| VU] rTTTY vttt ettt T
¢ Insert in output
1:] 1.5 77771 TN rtt| ottt i
------------------------------ subst del
g 2.0 cost cost
______________________________ insert :
O 2.5 cost

String alignment

Using corners to calculate substitution and indel costs

out | /in —

v e n 1 r Substitute (unchanged
0| 0.5 1.0 1.5 2.0 2.5 or with modification)
5|1 .5
V| 0.5 77" A R)
i —— Delete from input
e | 1.0| VU] rTTTY vttt ettt T
¢ Insert in output

1:] 1.5 | 777 T T T i

------------------------------ subst del
g 2.0 cost cost

______________________________ insert ;
O 2.5 cost

String alignment

Using corners to calculate substitution and indel costs

out | /in —

\ < n 1 r Substitute (unchanged
0| 0.5 1.0 1.5 2.0 2.5 or with modification)
5|1 .51 .5|1 .5|1 .5
VvV (010 P A I R
" > > > > ——Jp Delete from input
e | 1.0| VU] rTTTY vttt ettt T
¢ Insert in output
1:] 1.5 77771 TN rtt| ottt i
g 2.0 v o vl vl subst del
cost cost
______________________________ insert ;
O 2.5 cost

String alignment

Using corners to calculate substitution and indel costs

out | /in —

v e n 1 r Substitute (unchanged
0| 0.5 1.0 1.5 2.0 2.5 or with modification)

——Jp» Delete from input

e 1.0 .5 5 5 5
¢ Insert in output
1:] T e e I
g 2.0 0017 Tttt vttt T v subst del
cost cost
______________________________ insert
o 2.5 cost

String alignment

Using corners to calculate substitution and indel costs

out | /in —

v e n 1 r Substitute (unchanged
0| 0.5 1.0 1.5 2.0 2.5 or with modification)

VvV 0.5 A R)
) > e > > ——Jp» Delete from input
1.5/0 .51 .5/1 .51 .5
e| 1.0, 5 5 5
1 5|1 5|1 5|1 5|1 .5 ¢ Insert in output
I.] 1.5 15 5 5 5 5
1 .5|1 .5|1 .51 .5|1 .5
g 2,0 vl L e subst del
5 5 5 5 5 cost cost

String alignment

Center value is minimum of corners

out | /in —

v e n 1 r Substitute (unchanged
o| 0.5 1.0 1.5| 2.0 2.5 or with modification)
0 .51 .5|1 .5|1 .5|1 .5
VI 0.5 R il I Pt _
> > > > ——» Delete from input
.:5/0 .51 .51 . 5|1 - 5.
e | 1.0, 5 5 5
5|1 .51 .51 . 51 . 5 ¢ Insert in output
D155 5 5 5 5
1 .5/1 .5|1 .5|1 .5|1 .5
g | 2.0 et BEEet LRt IFEEEE subst del
.55 .55 .55 .55 .55 cost cost
1 .51 .5|1 .5|1 .5|1 .5 insert |
o, 2.5 .51 5| 5| 5| 5| cost

String alignment

Center value is minimum of corners

out | /in —

v e n 1 r Substitute (unchanged
o| 0.5 1.0 1.5| 2.0 2.5 or with modification)

Vv 0.5 A N N T .)
51 0 (5.5 5 3 3 ——3» Delete from input
.:5/0 .51 .51 . 5|1 - 5.
e | 1.0, 5 5 5
5|1 .51 .51 . 51 . 5 ¢ Insert in output
D155 5 5 5 5
1 .5 5 .5 5|1 .5
gl 2o s s s s subst del
.5 -5 -5 -5 -5 cost cost
1 .51 .5|1 .5|1 .5|1 .5 insert |
o, 2.5 .51 5| 5| 5| 5| cost

String alignment

Center value is minimum of corners

out | /in —

v e n 1 r Substitute (unchanged
o| 0.5 1.0 1.5| 2.0 2.5 or with modification)

V|05 5 50 51 o 5 o 50, o .
0 .5 1.0 1.5 :2.0 _> Delete from 1nput
50 .54 5L . 3 5.
e 1.0 5 5 5 5
5|1 5|1 .51 . 5 |1 . 5 ¢ Insert in output
13 1.5 .5 5 5 5 5
1 .51 .51 .51 .51 .5
g 2.0 itk I subst del
.55 .55 .55 .55 .55 cost cost
1 .5/1 .51 .5|1 .5]|1 .5 insert !
o 2.5 5 5 5 5 5 cost

String alignment

Center value is minimum of corners

out | /in —

v e n 1 r
0 0.5 1.0 1.5 2.0 2.5

.5 5|1 .5 .5 .5
Vv 0.5 N 5T """""" T
voof .5/°:1.0 1.5°:2.0

.5 .5 .5 .5 .5
e 1.0 | 7 T e 5. _|lsi. |lsi. _
.5 or 5/711.0/7 1.5

.5 .5 .5 .5 .5
IJ 1.5 |7 T e 5f """""""""
1.0 .5/7:1.0 1.57.2.0

.5 .5 .5 .5 .5
g} 2.0 [T e T 5: """""""""
1.5/7:1.07'1.5 2.007:2.5

.5 .51 .5 .5 .5
(@] 2.5 | T e 0T 5f """""""""
2.0(7:1.5¢7:2.0 2.5 3.0

Substitute (unchanged
or with modification)
——Jp Delete from input

¢ Insert in output

subst del
cost cost
insert
cost

String alignment

Paths with smallest costs

out | /in —

\V4 e n 1 r \ Substitute (unchanged

{ or with modification)

N
‘ox.s 1 .51 .51 .5|1 .5
V| o5 | . . |

.5[%11.0r% 1.5/ 2.0 ——Jp Delete from input

: 5 .5 5: 5 551 0F5 4.5
l :% ¢ Insert in output
1.5 1*5 \
13 1.5 7777 WV e TV | - AW §
.5 5. .5 ! .5
; LN ~— P} —ii
1 .5 |1 4s5Y 13
g 2.0 S A \? - - : 1 - subst del
5 5 ol i Esi 0.5: 5 cost cost
1.5 |1 f\ *‘\s\i insert |
O | 2.5 5! 5! i 54 51 cost |

String alignment
Using more sensible substitution costs, based on phonetic
similarity

out | /in —

v e n 1 r Substitute (unchanged
0| 0.5 1.0 1.5 2.0 2.5 or with modification)

. .5[%11.0[°1.5%12.0 ——Jp Delete from input
95 .5 |0 5 [.97 .5 |47 .5 [91 .5
€| 1.0 | i e el T e T T
3 50 .55:1.051.5

¢ Insert in output

5 5 .5 .5 .5
g 2.0 Ha i rToTs Fai coTToo subst del
-3i1.5r%11.0°!1.53:2.0[° 2.5 cost cost
ol 2.5 25| 5] 5] 5] -5 insert !
) | : : ! : £
5i2.0[5i1.5/512.0r512.5-53.0 cost

(Tedious to count by hand; remaining values left to your
imagination...)

