
Learning alternations, cont.

24.964—Fall 2004

Modeling phonological learning

Class 12 (9 Dec, 2004)

24.964—Class 12 9 Dec, 2004

Agenda items

• More on learning alternations

◦ Albright and Hayes (2002)
◦ Kruskal (1999)

Course evals •

• Guenther talk: 4:15,

24.964—Class 12	 9 Dec, 2004

Reminder: final projects

•	 Goal: lay out the issues, see where the problems lie

•	 Not intended to be polished, fully worked out proposals
or programs

•	 Please get them to me by next Thursday (12/16)

24.964—Class 12	 9 Dec, 2004

What we saw last week

Bootstrapping: using knowledge of surface phonotactics to
learn alternations (Tesar & Prince 2004)

•	 E.g., [rat] ∼ [rad@s] in a language with final devoicing

•	 The intuition: given a choice between /rad/ and /rat/, the
learner can use knowledge that FINDEVOI is high ranked
to choose /rad/

◦	 The grammar already derives [rat] correctly from /rad/

◦	 There is no way to derive [rad@s] from /rat­@s/

•	 Even when the grammar doesn’t already work in the
desired direction, it usually “works better” (desired output
is a tied winner, rather than a loser)

24.964—Class 12	 9 Dec, 2004

What we saw last week

Bootstrapping, part 2: using knowledge of some
alternations to infer other alternations (McCarthy, “Free
rides”)

•	 If you know /A/ → [B] in some words, try making attributing
all surface [B] to underlying /A/

•	 Keep the results if it permits you to formulate a more
restrictive grammar

•	 (Doesn’t handle cases where you want /A/ but there’s no
restrictiveness payoff, or where you want to set up only
SOME [B] as /A/)

24.964—Class 12	 9 Dec, 2004

Some issues with current OT approaches to

alternations

Supervision: assumes that learner can

•	 Find pairs that exhibit alternations

•	 Apply morphology correctly, to test hypotheses about
possible URs (Does /rat­@s/ yield [rad@s]?)

Interdependence of phonology and morphology:

➢	 Not necessarily safe to assume that morphology has been
fully learned correctly prior to learning phonology of
alternations!

24.964—Class 12	 9 Dec, 2004

Some issues with current OT approaches to

alternations

Non­incremental:

•	 Learner learns new grammar from scratch with each datum
or hypothesized modification to URs

24.964—Class 12	 9 Dec, 2004

Some issues with current OT approaches to

alternations

Limitations

•	 Scalability to multiple variants/multiple feature values/multiple
possible URs not yet explored

•	 No story (yet) for alternations not motivated by phonotactics

◦	 Derived environment phonology
◦	 Sychronically arbitrary (?) alternations

•	 Not equipped to handle alternations that change the
segment count (insertion, deletion, etc.)

24.964—Class 12	 9 Dec, 2004

Goals for today

•	 Look at an approach that tries to take on the interdependence
of morphology and phonology

•	 Brief intro to a procedure that can get past the segment
count limitation (string edit distance)

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Recall Tesar & Prince:

•	 Learners are given pairs of forms that stand in (potentially)
any morphological relation

•	 Morphology is known; learner’s task is to make sure the
phonological form can be derived using a single UR

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

A different approach: Albright & Hayes (2002)

•	 Learn phonology as part of the process of learning morphology

•	 Learner’s task is to develop a clean analysis of morphology;
learning phonology helps improves accuracy of the analysis

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Input to the learner:

• Pairs of forms that in a particular morphological relation

• List of sequences known to be surface illegal

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

E.g., German sg ∼ pl

Pairs: •
pi:p pi:p@

voRt voRt@

StRaIt StRaIt@

vERk vERk@

lo:p lo:b@

moRt moRd@

gRa:t gRa:d@

aIt aId@
bERk bERg@

•	 Illegal sequences:
*b#, *d#, *g#, . . .

‘peep’
‘word’
‘fight’
‘work’
‘praise’
‘murder’
‘degree’
‘oath’
‘mountain’

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

E.g., Or, English pres ∼ past

Pairs: •
du dId

se sEd

go wEnt

gEt gat

no nu
mIs mIst

prEs prEst

læf læft

•	 Illegal sequences:
*pd, *td, *kd, *dd, *sd, *bt, *dt, *gt, . . .

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Step 1: Try to learn some morphology, by figuring out the
changes

• Factor pairs into change (A → B) and context (C D)

•	 E.g.,
u Id / d →
e Ed / s
→
go → wEnt

E a / g t
→

o u / n

∅
→

t / mIs

∅
→

t / prEs

∅
→

t / læf
→

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Finding the change and the context for word­specific
changes:

rize each irregular verb). For example, experimen-
tal participants often volunteer splung as the past
tense of spling, extending the generalization to a
novel verb.

The importance of detailed generalizations is
not limited to irregular forms. We have found that
speakers are often sensitive to detailed generaliza-
tions even among regulars. For example, verbs in
English ending in voiceless fricatives ([f, T, s, S])
are always regular. Our experiments indicate that
English speakers are tacitly aware of this pattern.
Thus, an accurate model of their linguistic intui-
tions must be able to detect and learn the pattern in
the training data.

Although detailed generalizations are impor-
tant, it is also crucial for a learning model to be
able to form very broad generalizations. The rea-
son is that general morphological patterns cannot
be learned simply as the aggregation of detailed
patterns. Speakers can generate novel inflected
forms even for words that donít fit any of the de-
tailed patterns (Pinker and Prince 1988, Prasada
and Pinker 1993). Thus, a general rule is needed to
derive an output where no close analogues occur in
the training set. A special case of this sort is where
the base form ends in a segment that is not phonol-
ogically legal in the language (Halle 1978). Thus,
the German name Bach can be pronounced by
some English speakers with a final voiceless velar
fricative [x]. Speakers who can pronounce this
sound agree
Bach must be [a

basis of ordinary
In summary

learning m
produce

mu
formedness scor

3

3.1

Our m

forms to yi
its input
particular mo

construct rules that derive one from the other. As
an example, consider the pairs of forms in (1).

(1) ([mIs]pres., [mIst]past) ëmiss(ed)í
([prEs]pres., [prEst]past) ëpress(ed)í
([l æ f]pres., [l æ ft]past) ëlaugh(ed)í
([h√g]pres., [h√gd]past) ëhug(ged)í
([r√b]pres., [r√bd]past) ërub(bed)í
([nid]pres., [nid«d]past) ëneed(ed)í
([dZ√mp]pres., [dZ√mpt]past) ëjump(ed)í
([pl æ n]pres., [pl æ nd]past) ëplan(ned)í

When we compare the present and past forms
of each word, we see that the relation between
them can be expressed as a structural change (in
this case, adding [-t], [-d], or [-«d]) in a particular
context (after [mIs], after [h√g], etc.). Formally, the
structural change can be represented in the format
A � B, and the context in the format / C__D, to
yield word-specific rules like those in (2). (The
symbol ë#í stands for a word boundary.)

(2) � � t /# mIs __ #
� � t / # prEs __ #
� � t / # lÊf __ #
� � d / # h√g __ #
� � d /# r√b __ #
� � «d / # nid __ #
� � t /# dZ√mp __ #
� � d / # plÊn __ #

A B

mIs � # # mIs t

C D

• Note that this is limited to a single contiguous change (A

→ B); can’t handle two simultaneous changes

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Step 2: Generalization (but what to compare with what?)

•	 Restricting search space with a linguistic principle: locality

∅ t / m I s→
∅ /t
 Epr s
⎡
 ⎤
→

+syl

+voi

+son

−low

−bk

−tns

−rnd

⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎦

∅ t / X s→

adjacent, we are dealing with some sort of trunca-
tion; e.g. the mapping from English plurals to sin-
gulars. When neither A nor B is zero, we are
dealing either with two paradigm members that
each have their own affix, or cases of ablaut or
similar nonconcatenative morphology.

As such word-specific rules accumulate, the
model attempts to generalize. As soon as two rules
with the same structural change have been discov-

� �
� �

� �

unmatched material, then the segments immedi-
ately to the left of C (here, [I] and [E]) are com-
pared to see what features they have in common. If
they share any feature specifications, these are re-
tained as a left-side featural term (C feat), in this
case, [+syllabic, ñlow, ñback, ñtense, ñround]. Fi-
nally, if either C1 or C2 contains any additional
material that has not been included in C or C feat,
this is converted into a free variable (X). The same
procedure is carried out in mirror image on the

right, yielding shared D and D feat terms, and a
right-side variable Y. Any of these terms may be
null.

This generalization procedure retains as much
shared material as possible, yielding the most spe-
cific rule that will cover both input forms. For this
reason, we call it minimal generalization.

Minimal generalization is iterated over the data
set. Iteration consists of comparing word-specific

also
 procedure for com-

a generalized rule
plica-

pare a segment
m (C feat,

in
model

 a novel

of in-
rule for

also
well-

out-

follows.
s in the

ms
 of the
forms

y of

(for example, 990 correct predictions out of 1000)
is better than reliability based on low scope (for
example, 5 out of 5). Following Mikheev (1997),
we therefore adjust reliability using lower confi-

3 We believe, but have not proven, that no additional rules are
discovered by comparing generalized rules against generalized
rules.

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Features of generalization scheme:

•	 “Myopic” description language: fully specified segments
adjacent to the change, classes of segments farther out,
free variables at edge

•	 Minimal generalization: retain all shared feature values
in featural term

A� B / C1 __ D1
+ A� B / C2 __ D2

= A� B / X C C __ D D Y

24.964—Class 12 9 Dec, 2004

Minimal Generalization Model

Iterative generalization:

miss press
HH lllllllllllllllll

lllllllllllllllll

lllllllllllllllll

lllllllllllllllll

$$$$$$$$ vv vvvvvv

∅ → t / [I,E] s # laugh
RR kkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkkk

((((((((uuuuuuuu

∅ → t / vcls fric # jump
SS qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqq

)))))))) xxxxxxxx

∅ → t / vcls cons #

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Rule evaluation:

•	 Scope of a rule = number of forms that meets its structural
description

◦	 I.e., words containing CAD in input

•	 Hits, or positive examples = number of forms that it
correctly derives

◦	 I.e., words containing CAD in input, and CBD in output

•	 Reliability = (hits / scope)

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Examples:

•	 Suffixing ­t after voiceless consonants works quite well in
general, but there are some exceptions

think, take, eat, teach, etc. ◦
want, start, wait, etc. ◦

◦	 Reliability = # of vcls­final vbs − ([t]­final vbs + vcls­final irregs)
of vcls­final vbs

•	 Suffixed ­t after voiceless fricatives works exceptionlessly

miss, press, laugh, etc. ◦
◦	 No irregs end in voiceless­final frics

◦	 Reliability = # of vcls­fric final vbs =	1# of vcls­fric final vbs

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Comparing generalizations of different sizes:

•	 Affix ­t after [s], after [s, S], and after [f, T, s, S] all work
perfectly

◦	 No irregulars among any subset of voiceless frics

•	 Intuitively, the more striking fact is lack of irregs after [f,
T, s, S], since it’s more general

•	 Confidence adjustments;

◦	 Reliability ratios are adjusted downwards, using statistical
adjustment that compensates for small numbers

◦	 E.g., 2/2 = .57, 5/5 = .83, 20/20 = .95, 100/100 = .99

24.964—Class 12 9 Dec, 2004

C
on

fid
en

ce

Confidence limits

1

0.8

0.6

0.4
40 50

0.4

0.6

0.8

1

0 10 20 30 40 50
Number of observations

C
on

fid
en

ce

Number of observations

0 10 20 30

Minimal Generalization Model

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Learning phonology to improve confidence

•	 Exceptions to suffixing ­d after vcd segments:

come, give, find, leave, etc. ◦
need, decide, avoid, etc. ◦

◦	 Reliability = # of vcd­final vbs − ([d]­final vbs + vcd­final irregs)
of vcd­final vbs

•	 The latter batch has a principled explanation—namely,
phonology

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Path to phonological rules:

•	 After comparing (hug, hugged) and (rub, rubbed), the
learner knows ­d can be affixed after voiced stops

•	 When the learner encounters (need, needed), it treats the
pair as a ∅ → @d rule

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Path to phonological rules:

•	 However, need also meets the structural description of ∅

→ d / vcd stop #, so its reliability must be updated

•	 Try applying ∅ → d / vcd stop # to need, yielding
incorrect *[nidd]

•	 Scan *[nidd] for surface illegal sequences (here, *[dd]

◦	 Could also just run /nid+d/ through grammar and see
if faithful candidate is eliminated

•	 Posit phonological rule: /dd/ → [d@d]

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Phonological rules can improve morphological confidence

•	 Exceptions to suffixing ­d after vcd segments:

come, give, find, leave, etc. ◦
need, decide, avoid, etc. ◦

◦	 Reliability = # of vcd­final vbs − (vcd­final irregs + [d]­final vbs)
of vcd­final vbs

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Phonological rules can improve morphological confidence

•	 Exceptions to suffixing ­d after vcd segments:

come, give, find, leave, etc. ◦
need, decide, avoid, etc. ◦

◦	 Reliability = # of vcd­final vbs − (vcd­final irregs)

of vcd­final vbs

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Error­driven learning

•	 In this case, errors are generated in the course of evaluating
morphological generalizations

•	 (What generates the errors in Tesar & Prince’s model?)

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

What this procedure won’t get you:

•	 /pd/ → [pt], etc. (progressive devoicing)

•	 Reason: in order to learn this, we would need to generate

>

errors like *[dZ2mpd]

>

•	 In order to generate *[dZ2mpd], we need a rule suffixing

­d after voiceless consonants

•	 However, ­d only occurs after voiced consonants (for
precisely this reason). Minimal generalization will only
yield ∅ → d / [+voi] #

All ­d examples share [+voi]) ◦

The problem: complementary distribution

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Overcoming complementary distribution

•	 Try to identify “competing” changes (A → B, A → B�, . . .)

•	 When two changes share the same input (A), clone their
contexts and see whether any phonological rules can be
found

•	 Example: given both ∅ t and ∅ d, try creating ∅ d
→ →	 →
rules in the voiceless contexts (and vice versa)

◦	 E.g., ∅ → d / vcls fric #
◦	 Generates errors *[mIsd], *[prEsd], *[læfd], etc.
◦	 Yields rules devoicing after [s], [f], . . .

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Another problem that one often encounters

•	 Exceptional words that behave as if they have the opposite
value of one of their features

•	 Kenstowicz and Kisseberth (1977): “input exceptions”

•	 Examples in English: burnt, dwelt

These could lead the learner to conclude the ­t occurs◦

after any consonant, even though most examples are
after voiceless consonants

•	 Solution (details omitted): compare the reliability of bigger
generalizations against the reliability of their subsets; if
most of the positive examples (hits) are from a particular
subset, then you must penalize the broader generalization

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Summary

•	 Similar in spirit to Tesar & Prince (2004), in that previous
knowledge of phonotactics is employed to identify errors
that might be attributed to phonology

•	 Unlike Tesar & Prince’s proposal, it is embedded in a more
general model of learning morphological relations

◦	 Errors are generated in the course of trying to find
cleaner morphological generalizations (fewer exceptions)

◦	 Contains mechanisms for handling pairs that cannot
be explained phonotactically
� Rule format allows any alternation to be expressed

(not just those provided by universal constraint inventory)
� Word­specific rules provides mechanism for handling

idiosyncratic exceptions

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

This can get the phonological rules, but what about
deciding URs of individual lexical items?

•	 Same intuition as Tesar & Prince (2004): derivations work
in one direction, but not the opposite direction

•	 E.g., /bEKg/ → [bEKk] can be derived by devoicing (since
*[bEKg] would be surface illegal); /bEKk+@/ → [bEKg@]
can’t be derived phonologically, since *[bEKk@] is incorrect,
but legal

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Some problems with the model

•	 Representation of phonological “rules” is clunky

•	 No a priori assumptions about fixes (is this good or bad?)

•	 Environments are limited be generalization scheme to
local contexts

◦	 More recent work attempting to relax this, and integrate
resulting generalizations into an OT­based grammar,
using the GLA

◦	 Albright & Hayes (2004) Modeling productivity with the
Gradual Learning Algorithm

http://www.linguistics.ucla.edu/people/hayes/papers/AlbrightHayesModelingProductivityWithGLA.pdf
http://www.linguistics.ucla.edu/people/hayes/papers/AlbrightHayesModelingProductivityWithGLA.pdf

24.964—Class 12	 9 Dec, 2004

Minimal Generalization Model

Some problems with the model

•	 No proofs concerning algorithmic difficulty

•	 Can’t handle morphological relations involving multiple
changes

24.964—Class 12	 9 Dec, 2004

String alignment

The problem: how do you know what stays the same, and
what changes?

•	 Example: Spanish

v e N g o ‘I come’
v je n e ‘he comes’
v e n i r ‘to come’
v e n d r e ‘I will come’

•	 Before you can even begin to generalize about or explain
a change, you have to figure out what the change actually
is

(How are correspondences usually calculated within OT?)

24.964—Class 12	 9 Dec, 2004

String alignment

A useful technique: string alignment by string
edit/levenshtein distance

•	 Intuition: alignment can be calculated by figuring out the
smallest number of changes needed to change one string
to another

◦	 If two strings share material, don’t need to change it
◦	 Unshared material must be deleted, inserted, or substituted

24.964—Class 12 9 Dec, 2004

String alignment

Equivalence of alignments and operations

• Leave v unchanged

v e n — i r
v e N g o — • Leave e unchanged

• Substitute n by N

v e n i r • Insert g

v e N g o

2222222222222222222222222222

• Substitute i by o

• Delete r

24.964—Class 12	 9 Dec, 2004

String alignment

The task: analyze correspondence as a sequence of
substitutions, insertions, and deletions

•	 In practice, we usually want the shortest sequence of
alignments/changes

•	 That is, the best alignment

24.964—Class 12 9 Dec, 2004

String alignment

Chart to calculate alignment

out ↓ / in →
v e n i r

v

e

N
g

o

24.964—Class 12 9 Dec, 2004

String alignment

Ideal path (one of many)

out ↓ / in →
v e n i r

v

e

N
g

o

Substitute (unchanged
or with modification)

Delete from input

Insert in output

24.964—Class 12 9 Dec, 2004

String alignment

Using corners to calculate substitution and indel costs

out ↓ / in →
v e n i r

0 0.5 1.0 1.5 2.0 2.5

v
e

0.5

e
i

1.0

N
v

1.5

g
n

2.0

o 2.5

Substitute (unchanged
or with modification)

Delete from input

Insert in output

subst
cost

del
cost

insert
cost

24.964—Class 12 9 Dec, 2004

String alignment

Using corners to calculate substitution and indel costs

out ↓ / in →
v e n i r

0 0.5 1.0 1.5 2.0 2.5

 0 .5v
e

0.5 .5

e
i

1.0

N
v

1.5

g
n

2.0

o 2.5

subst
cost

del
cost

insert
cost

Substitute (unchanged
or with modification)

Delete from input

Insert in output

24.964—Class 12 9 Dec, 2004

String alignment

Using corners to calculate substitution and indel costs

out ↓ / in →
v e n i r

0 0.5 1.0 1.5 2.0 2.5

 0 .5 1 .5v
e

0.5 .5 .5

e
i

1.0

N
v

1.5

g
n

2.0

o 2.5

subst
cost

del
cost

insert
cost

Substitute (unchanged
or with modification)

Delete from input

Insert in output

24.964—Class 12 9 Dec, 2004

String alignment

Using corners to calculate substitution and indel costs

out ↓ / in →
v e n i r

0 0.5 1.0 1.5 2.0 2.5

 0 .5 1 .5 1 .5 1 .5 1 .5v
e

0.5 .5 .5 .5 .5 .5

e
i

1.0

N
v

1.5

g
n

2.0

o 2.5

subst
cost

del
cost

insert
cost

Substitute (unchanged
or with modification)

Delete from input

Insert in output

24.964—Class 12 9 Dec, 2004

String alignment

Using corners to calculate substitution and indel costs

out ↓ / in →
v e n i r

0 0.5 1.0 1.5 2.0 2.5

 0 .5 1 .5 1 .5 1 .5 1 .5v
e

0.5 .5 .5 .5 .5 .5

 1 .5 0 .5 1 .5 1 .5 1 .5e
i

1.0 .5 .5 .5 .5 .5

N
v

1.5

g
n

2.0

o 2.5

Substitute (unchanged
or with modification)

Delete from input

Insert in output

subst
cost

del
cost

insert
cost

24.964—Class 12 9 Dec, 2004

String alignment

Using corners to calculate substitution and indel costs

out ↓ / in →
v e n i r

0 0.5 1.0 1.5 2.0 2.5

 0 .5 1 .5 1 .5 1 .5 1 .5v
e

0.5 .5 .5 .5 .5 .5

 1 .5 0 .5 1 .5 1 .5 1 .5e
i

1.0 .5 .5 .5 .5 .5

 1 .5 1 .5 1 .5 1 .5 1 .5N
v

1.5 .5 .5 .5 .5 .5

 1 .5 1 .5 1 .5 1 .5 1 .5g
n

2.0 .5 .5 .5 .5 .5

 1 .5 1 .5 1 .5 1 .5 1 .5o 2.5 .5 .5 .5 .5 .5

Substitute (unchanged
or with modification)

Delete from input

Insert in output

subst
cost

del
cost

insert
cost

24.964—Class 12 9 Dec, 2004

String alignment

Center value is minimum of corners

out ↓ / in →
v e n i r

0 0.5 1.0 1.5 2.0 2.5

 0 .5 1 .5 1 .5 1 .5 1 .5v
e

0.5 .5 0 .5 .5 .5 .5

 1 .5 0 .5 1 .5 1 .5 1 .5e
i

1.0 .5 .5 .5 .5 .5

 1 .5 1 .5 1 .5 1 .5 1 .5N
v

1.5 .5 .5 .5 .5 .5

 1 .5 1 .5 1 .5 1 .5 1 .5g
n

2.0 .5 .5 .5 .5 .5

 1 .5 1 .5 1 .5 1 .5 1 .5o 2.5 .5 .5 .5 .5 .5

Substitute (unchanged
or with modification)

Delete from input

Insert in output

subst
cost

del
cost

insert
cost

24.964—Class 12 9 Dec, 2004

String alignment

Center value is minimum of corners

out ↓ / in →
v e n i r

0 0.5 1.0 1.5 2.0 2.5

 0 .5 1 .5 1 .5 1 .5 1 .5v
e

0.5 .5 0 .5 .5 .5 .5 .5

 1 .5 0 .5 1 .5 1 .5 1 .5e
i

1.0 .5 .5 .5 .5 .5

 1 .5 1 .5 1 .5 1 .5 1 .5N
v

1.5 .5 .5 .5 .5 .5

 1 .5 1 .5 1 .5 1 .5 1 .5g
n

2.0 .5 .5 .5 .5 .5

 1 .5 1 .5 1 .5 1 .5 1 .5o 2.5 .5 .5 .5 .5 .5

Substitute (unchanged
or with modification)

Delete from input

Insert in output

subst
cost

del
cost

insert
cost

24.964—Class 12 9 Dec, 2004

String alignment

Center value is minimum of corners

out ↓ / in →
v e n i r

0 0.5 1.0 1.5 2.0 2.5

 0 .5 1 .5 1 .5 1 .5 1 .5v
e

0.5 .5 0.5 .5.5 1.0.5 1.5.5 2.0

 1 .5 0 .5 1 .5 1 .5 1 .5e
i

1.0 .5 .5 .5 .5 .5

 1 .5 1 .5 1 .5 1 .5 1 .5N
v

1.5 .5 .5 .5 .5 .5

 1 .5 1 .5 1 .5 1 .5 1 .5g
n

2.0 .5 .5 .5 .5 .5

 1 .5 1 .5 1 .5 1 .5 1 .5o 2.5 .5 .5 .5 .5 .5

Substitute (unchanged
or with modification)

Delete from input

Insert in output

subst
cost

del
cost

insert
cost

24.964—Class 12 9 Dec, 2004

String alignment

Center value is minimum of corners

out ↓ / in →
v e n i r

0 0.5 1.0 1.5 2.0 2.5

 0 .5 1 .5 1 .5 1 .5 1 .5v
e

0.5 .5 0.5 .5.5 1.0.5 1.5.5 2.0

 1 .5 0 .5 1 .5 1 .5 1 .5e
i

1.0 .5 .5.5 0.5 .5.5 1.0.5 1.5

 1 .5 1 .5 1 .5 1 .5 1 .5N
v

1.5 .5 1.0.5 .5.5 1.0.5 1.5.5 2.0

 1 .5 1 .5 1 .5 1 .5 1 .5g
n

2.0 .5 1.5.5 1.0.5 1.5.5 2.0.5 2.5

 1 .5 1 .5 1 .5 1 .5 1 .5o 2.5 .5 2.0.5 1.5.5 2.0.5 2.5.5 3.0

Substitute (unchanged
or with modification)

Delete from input

Insert in output

subst
cost

del
cost

insert
cost

24.964—Class 12 9 Dec, 2004

String alignment

Paths with smallest costs

out ↓ / in →
v e n i r

0 0.5 1.0 1.5 2.0 2.5

 0 .5 1 .5 1 .5 1 .5 1 .5v
e

0.5 .5 0.5 .5.5 1.0.5 1.5.5 2.0

 1 .5 0 .5 1 .5 1 .5 1 .5e
i

1.0 .5 .5.5 0.5 .5.5 1.0.5 1.5

 1 .5 1 .5 1 .5 1 .5 1 .5N
v

1.5 .5 1.0.5 .5.5 1.0.5 1.5.5 2.0

 1 .5 1 .5 1 .5 1 .5 1 .5g
n

2.0 .5 1.5.5 1.0.5 1.5.5 2.0.5 2.5

 1 .5 1 .5 1 .5 1 .5 1 .5o 2.5 .5 2.0.5 1.5.5 2.0.5 2.5.5 3.0

Substitute (unchanged
or with modification)

Delete from input

Insert in output

subst
cost

del
cost

insert
cost

24.964—Class 12 9 Dec, 2004

String alignment

Using more sensible substitution costs, based on phonetic
similarity

out ↓ / in →
v e n i r

0 0.5 1.0 1.5 2.0 2.5

 0 .5 .95 .5 .80 .5 .94 .5 .86 .5v
e

0.5 .5 0.5 .5.5 1.0.5 1.5.5 2.0

.95 .5 0 .5 .97 .5 .47 .5 .91 .5e
i

1.0 .5 .5.5 0.5 .5.5 1.0.5 1.5

.71 .5 .95 .5 .61 .5 .94 .5 .85 .5N
v

1.5 .5 1.0.5 .5.5 1.0.5 1.5.5 2.0

.5 .5 .5 .5 .5g
n

2.0 .5 1.5.5 1.0.5 1.5.5 2.0.5 2.5

.5 .5 .5 .5 .5o 2.5 .5 2.0.5 1.5.5 2.0.5 2.5.5 3.0

Substitute (unchanged
or with modification)

Delete from input

Insert in output

subst
cost

del
cost

insert
cost

(Tedious to count by hand; remaining values left to your
imagination. . .)

