
24.964 Fall 2004 A. Albright
Modeling phonological learning 16 Sept, 2004

Class 2: Simple learning models

(1) Learning phonology

LEARNING AGENT

Learning
component

Evaluation
component

Performance
component

modifies

actuators

sensors

ENVIRONMENT

lexicon,
grammar

other people
saying stuff

phonetic
implementation

perceptual
system

input

output

(2) Supervised learning

•	 Learner is given stimuli (inputs) and also answers (outputs)

•	 Comparing the input and the output lets the learner see what it needs to learn

• Task is to learn a function converting inputs to their corresponding outputs

Unsupervised learning

•	 Learner receives only input, but no output values

Model is not told “what to do”
•

•	 It looks at the data and tries to find patterns; figure out what types of inputs are likely to occur

(3) Error­driven learning

•	 Error rate = (number of errors / number of cases)

•	 (1 − error rate) = accuracy, or coverage of the hypothesis

(4) Distinguishing between different types of errors

Class Positive Class Negative
Prediction True False
Positive Pos Pos
Prediction False True
Negative Neg Neg

•	 Correct applications: true positive, true negative

•	 Misclassifications: false positive, false negative

(See hepburn3.pl; this program attempts to calculate false positives and false negatives, but can’t
quite do it accurately—why not?)

(5) hepburn4.pl

$input_file = "Japanese­ToConvert.txt";

open (INFILE, $input_file) or die "Warning! Can’t open input file: $!\n";

$check_file = "Japanese­Converted.txt";

open (CHECKFILE, $check_file) or die "Warning! Can’t open check file: $!\n";

Construct an array of arrays.

24.964 Modeling phonological learning—16 Sept, 2004 p. 2

The syntax is unintuitive; the square brackets take the list inside of them,

bundle them up, and store them somewhere. The first item in the @rules array,

then, is a reminder of where to go to find those values.

@rules = (

["hu", "fu"],

["ty", "ch"],

["sy", "sh"],

["zy", "j"],

["ti", "chi"],

["si", "shi"],

["zi", "ji"],

["tu", "tsu"],

);

while ($line = <INFILE>) {

chomp($line);

$original = $line;

for ($i = 0; $i <= $#rules; $i++) {

$line =~ s/$rules[$i][0]/$rules[$i][1]/g;

}

print "$line";

Now check answer against the "real" answer in the checkfile

$check_line = <CHECKFILE>;

chomp($check_line);

if ($line eq $check_line) {

print "\t(correct)\n";

} else {

if ($check_line eq $original) {

We changed something that we shouldn’t have

print "\t(incorrect ­ accidentally modified <$original> when we shouldn’t have\n";

} else {

print "\t(incorrect ­ need to learn something to change <$original> to <$check_line> \n";

}

}

}

(6) hepburn5.pl

hepburn5.pl

Converts Japanese text in "official" Monbushoo (Kunrei­shiki) romanization

to more common "Hepburn"­style romanization

A list of differences can be found at:

http://en.wikipedia.org/wiki/Romaji

$input_file = "Japanese­ToConvert.txt";

open (INFILE, $input_file) or die "Warning! Can’t open input file: $!\n";

$check_file = "Japanese­Converted.txt";

open (CHECKFILE, $check_file) or die "Warning! Can’t open check file: $!\n";

$rules_file = "JapaneseRules.txt";

open (RULESFILE, $rules_file) or die "Warning! Can’t open rule file: $!\n";

Read in the file and store each line in the rules array of arrays

while ($line = <RULESFILE>) {

chomp($line);

($kunrei, $hepburn) = split("\t", $line);

Now, place this pair onto the end of the @rules array

24.964 Modeling phonological learning—16 Sept, 2004	 p. 3

push(@rules, [$kunrei, $hepburn]);

}

while ($line = <INFILE>) {

chomp($line);

$original = $line;

for ($i = 0; $i <= $#rules; $i++) {

$line =~ s/$rules[$i][0]/$rules[$i][1]/g;

}

print "$line";

Now check answer against the "real" answer in the checkfile

$check_line = <CHECKFILE>;

chomp($check_line);

if ($line eq $check_line) {

print "\t(correct)\n";

} else {

if ($check_line eq $original) {

We changed something that we shouldn’t have

print "\t(incorrect ­ accidentally modified <$original> when we shouldn’t have\n";

} else {

print "\t(incorrect ­ need to learn something to change <$original> to <$check_line> \n";

}

}

}

(7) hepburn6.pl (excerpt)

$number_correct = 0;

for	 ($i = 0; $i <= $#inputs; $i++) {

We’ll start with the current input, and transform it

$output = $inputs[$i];

for ($r = 0; $r <= $#rules; $r++) {

$output =~ s/$rules[$r][0]/$rules[$r][1]/g;

}

print "$output";

Now check answer against the "real" answer in the checkfile

if ($output eq $answers[$i]) {

print "\t(correct)\n";

} else {

if ($answers[$i] eq $inputs[$i]) {

We changed something that we shouldn’t have

print "\t(incorrect ­ accidentally modified <$inputs[$i]> when we shouldn’t have\n";

} else {

print "\t(incorrect ­ need to learn something to change <$inputs[$i]> to <$answers[$i]> \n";

}

}

}

if ($number_correct == ($#inputs + 1)) {

print "\n***Perfect ­­ all forms accounted for***\n";

}

24.964 Modeling phonological learning—16 Sept, 2004 p. 4

(8) Comparison: decision lists1

“All electronics” data set

Age Income Student? Credit Buys
≤30
≤30

30­40

high
high
high

no
no
no

fair
excellent

fair

no
no
yes

>40 med no fair yes
>40 low yes fair yes
>40 low yes excellent no

30­40 low yes excellent yes
≤30
≤30
>40

med
low
med

no
yes
yes

fair
excellent

fair

no
yes
yes

≤30
30­40

med
med

yes
no

excellent
excellent

yes
yes

30­40 high yes fair yes
>40 med no excellent no

(9) Predictive power of factors (step 1):

Factor Level How many buy
≤30 2/5

Age 30­40 4/4
>40 3/5
low 3/4

Income med 4/6
high 2/4

6/7
Student

yes
no 3/7
fair 5/7

Credit
excellent 4/7

(10) Predictive power among remaining cases (step 2):

Factor Level
low

≤30 buy
1/1

>40 buy
1/2

Income med
high

1/2
0/2

2/3
0/0

Student
yes
no

2/2
0/3

2/3
1/2

fair 2/3 3/3
Credit

excellent 0/2 0/2

(11) Final decision tree

Age?

30-40≤30

yes no

>40

Student? YES Credit?

YES NO

fair excellent

YES NO

☞ Why would this approach not work for phonology?

1http://www.cs.ubc.ca/labs/lci/CIspace/Version3/dTree/index.html

http://www.cs.ubc.ca/labs/lci/CIspace/Version3/dTree/index.html

24.964 Modeling phonological learning—16 Sept, 2004	 p. 5

(12) hepburn7.pl (excerpt)

$iterations = 0;

while ($number_correct != ($#inputs + 1)) {

$number_correct = 0;

$iterations++;

Try flipping two rules

$r1 = rand($#rules + 1);

$r2 = rand($#rules + 1);

The following contains an extra fancy bit of code to round of the number when it’s printed.

Instead of the variables $r1 and $r2, we put a placeholder "%.3f" meaning a floating point

(decimal) number with three decimal places. Then, after the string, we list the variables

that should go in those spots (in order)

printf "Flipping %.3f ($rules[$r1][0]­>$rules[$r1][1]) and %.3f ($rules[$r2][0]­>$rules[$r2][1])\n", $r1, $r2;

@rules[$r1, $r2] = @rules[$r2, $r1];

for ($i = 0; $i <= $#inputs; $i++) {

We’ll start with the current input, and transform it

$output = $inputs[$i];

for ($r = 0; $r <= $#rules; $r++) {

$output =~ s/$rules[$r][0]/$rules[$r][1]/g;

}

Now check answer against the "real" answer in the checkfile

if ($output eq $answers[$i]) {

$number_correct++;

}

}

if ($number_correct == ($#inputs + 1)) {

print "\n*** Perfect ­­ all forms accounted for on iteration $iterations ***\n";

}

}

(13) hepburn8.pl (excerpt)

We want to keep a copy of the start state, so we can keep going back to it

for (my $i = 0; $i <= $#rules; $i++) {

print "keeping original copy of rule $i\n";

push (@original_rules, @rules­>[$i]);

}

for ($t = 1; $t <= $number_of_trials; $t++) {

For each trial, we start at the start state and try solving it again

@rules = undef;

for (my $i = 0; $i <= $#original_rules; $i++) {

push (@rules, @original_rules­>[$i]);

}

$iterations = 0;

$number_correct = 0;

while ($number_correct != ($#inputs + 1)) {

$number_correct = 0;

$iterations++;

Try flipping two rules

$r1 = rand($#rules + 1);

$r2 = rand($#rules + 1);

@rules[$r1, $r2] = @rules[$r2, $r1];

for	 ($i = 0; $i <= $#inputs; $i++) {

We’ll start with the current input, and transform it

$output = $inputs[$i];

for ($r = 0; $r <= $#rules; $r++) {

$output =~ s/$rules[$r][0]/$rules[$r][1]/g;

24.964 Modeling phonological learning—16 Sept, 2004	 p. 6

}

Now check answer against the "real" answer in the checkfile

if ($output eq $answers[$i]) {

$number_correct++;

}

}

}

$total_iterations += $iterations;

print "Trial $t took $iterations iterations\n";

}

Now that we’re done, the average iterations is the total over the number of trials

$average_iterations = $total_iterations / $number_of_trials;

printf "\nAfter $number_of_trials trials, the average solution time is %.2f iterations\n", $average_iterations;

Assignment 2: Due 9/23

1. The program italian.pl (presented in class) provides a possible (but extremely stupid and ineffi­
cient) approach to finding a rule ordering that is consistent with the data. In psuedo­code:

Pick one rule (R1) at random;

Pick a second rule (R2) at random;

Swap R1 and R2 in the list of ordered rules;

Can you think of a more sensible approach, that might guide the learner to modify the current hy­

pothesis in a more efficient way? Explain your proposal in prose (≈1 paragraph) and try to formalize

it in pseudo­code

•	 Optional: try to implement your idea by modifying the italian.pl program. If your idea requires
getting Perl to do something that we haven’t seen before, ask me and I can try to point you to
the relevant commands. (This exercise would be very helpful in cementing your new­found
Perl skills, but it is not required, since I want to leave you time to do the readings)

2. Read Hutchinson, chapter 1, on basic terminology to characterize learning algorithms.	 Now con­
sider the following learning agent: a phonology student, whose task is to find the solution to a typ­
ical phonology problem set. Characterize the learning task. What is the training set like? (§1.1;
open/closed domain, clean/noisy, etc.) How would you characterize the data (§1.2)? What is the
solution space (or what determines it)? What type of algorithm(s) do such agents tend to employ
(§1.5)? Is it supervised? unsupervised? How do you know that a solution is right? Does order of
examples play a role?

Now think about children (infants) learning the phonology of their language. How does the task

differ from that of a phonology student? Is there a difference between learning phonotactics (the

inventory of the language, possible combinations) and learning alternations?

