24.973 Advanced Semantics Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

- (1) P induces a <u>strict partial order</u> on W (strict partial order = transitive, irreflexive, asymmetric relation) w $<_{P}$ w' iff w satisfies more propositions in P than w' w satisfies p iff p is true in w, i.e. iff p(w) = 1, i.e. iff w \in p
- (2) $P = \{p, q, r\}$
 - $w_1 \models p$ $w_2 \models q$ $w_3 \models r$ $w_4 \models p, q$ $w_5 \models q, r$ $w_6 \models p, q, r$
- (3) $L = \{p,q\}$, whereby
 - (i) $p = \neg PARK$
 - (ii) $q = park \rightarrow pay$
- (4) $[\text{John must pay a fine}]^{w,g} = 1$ iff w is such that for any w' related to w, John pays a fine in w'
- (5) w' is <u>related to</u> w iff
 - $(a) \quad \text{John parks in } w' \ (i.e. \ w' \in f_{epist}(w))$
 - (b) no w" in which John parks satisfies more propositions in L than w'
- (6) w' is related to w iff w' \in MAX_L(the set of worlds compatible with the facts in w) MAX_L(W) = {w \in W| $\neg \exists$ w' \in W: w' <_L w}
- (7) $\llbracket \text{must} \rrbracket^{w,g}(f)(g)(p) = 1 \text{ iff } \forall w' \in \text{MAX}_{g(w)}(\bigcap f(w)): w' \models p$