24.973 Advanced Semantics Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

TA 24.973, Feb 11 09, Tue Trinh

Semantics

[in the world of Sherlock Holmes, ϕ]^w = 1 iff [ϕ]^{the world of Sherlock Holmes} = 1

Problem: non-contingency

The semantics in (1) entails that \neg in the world of Sherlock Holmes, $\varphi \neg$ would express a non-contingent proposition, i.e. a proposition which either is true in every world, or is true in no world \rightarrow show this!

Semantics

[in the world of Sherlock Holmes, ϕ]^w = 1 iff $[\![\phi]\!]^{\text{the world of Sherlock Holmes <u>as describe in w</u>} = 1$ $<math>\rightarrow$ show that the non-contingency problem no longer exists!

 $\underline{World} = totality of facts...$

[in the world of SH, Watson has an odd number of hairs]^w = ?

 \rightarrow Sir Conan Doyle did not give a complete world description, but an incomplete one which could be part of many different complete world descriptions

Semantics

[in the world of Sherlock Holmes, ϕ]^w = 1 iff in every world w' compatible with the Sherlock Holmes stories in w, $[\![\phi]\!]^{w'} = 1$

Problem: non-specificity

Suppose Sir Conan Doyle wrote "Sherlock Holmes has a dog" and that was the only mention of Holmes' dog in the stories...

[in the world of Sherlock Holmes, he has no dogs]^w = ?

Semantics

[in the world of Sherlock Holmes, ϕ]^w \neq # only if [in the world of Sherlock Holmes, ϕ]^w = 1 or [in the world of Sherlock Holmes, $\neg\phi$]^w = 1; when \neq #, [in the world of Sherlock Holmes, ϕ]^w = 1 iff for every world w' compatible with the Sherlock Holmes stories in w, [$[\phi$]^{w'} = 1

→ cf. Gajewski's neg-raising analysis: $[\alpha \text{ believes } \phi]^{w} \neq \#$ only if $[\alpha \text{ believes } \phi]^{w} = 1$ or $[\alpha \text{ believes } \neg \phi]^{w} = 1$; when $\neq \#$, $[\alpha \text{ believes } \phi]^{w} = 1$ iff for every world w' compatible with what α believes in w, $[\phi]^{w'} = 1$

Problem: non-continuities

Suppose at one place, Sir Conan Doyle wrote "SH has an odd number of hair" and at another, he (mistakenly) wrote "SH has an even number of hairs"...

→ [in the world of Sherlock Holmes, he is a woman]^w = ?

 \llbracket believe $\varphi \rrbracket^{w} = \lambda x. \forall w'$ compatible with what x believes in $w: \llbracket \varphi \rrbracket^{w'} = 1$

 $B = \lambda x \cdot \lambda w \cdot \{w' | w' \text{ is compatible with what } x \text{ believes in } w \} = \lambda x \cdot \lambda w \cdot \lambda w' \cdot w' \text{ is compatible with what } x \text{ believes in } w$

 $\llbracket John \text{ believes } \varphi \rrbracket^w = 1 \text{ iff } \forall w' \in B(John)(w): \llbracket \varphi \rrbracket^{w'} = 1$

[B(John)] = an 'accessibility <u>relation</u>'

relation = something that is true of ordered pairs