24.973 Advanced Semantics Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5/6/09 TA Session Tue Trinh 24.073

Two kinds of third reading examples

- (1) Mary wants to buy a [hat of mine] mary want₀ [λ_2 mary buy₂ a [hat of mine]₀]
 - (i) $[[hat of mine]_1]]^g = \{a, b, c\}$
 - (ii) $\forall w'$ compatible with what mary wants in w_0 , $\exists x \in \{a,b,c\}$ such that mary buys x in w'
- (2) Mary wants to buy a [hat like mine]
 - mary want₀ [λ_2 mary buy₂ a [hat like mine]₀]
 - (i) $\llbracket [hat like mine]_1 \rrbracket^g = \{a,b,c,d,e\}$
 - (ii) $\forall w' \text{ compatible with what mary wants in } w_0, \exists x \in \{a,b,c,d,e\} \text{ such that mary buys } x \text{ in } w'$
- \rightarrow Schwagger shows us a situation where (2) is predicted to be false, but felt to be true
- (3) a. I have a red hat
 - b. red hats = $\{a,b,c\}$
 - b. Mary says: 'I want to buy a red hat, any will do'
 → predicted: [[Mary wants to buy a hat like mine]] = 0
- (4) Proof:

[Mary wants to buy a hat like mine] = 1 iff

 $\forall w' \in want(w_0)(mary)$. $\exists x \in \{a,b,c\}$ such that mary buys x in w'

- → Suppose d is a red hat in w_7 and mary buys only d in w_7 . Then $w_7 \in want(w_0)(mary)$, but there is no $x \in \{a,b,c\}$ such that mary buys x in w_7
- (5) More detailed analysis of [hat like mine] mary want₀ λ₂ mary buy₂ a [hat₂ like₂ [the hat₀ that I have₀]] [[Mary wants to buy a hat like mine]] = 1 iff ∀w' ∈ want(w₀)(mary). ∃x s.t. in w', x has the same color as the hat I have in w₀ & mary buys x in w'
- (6) Dubai Tower Problem

 λ_1 mary want₁ λ_2 mary buy₂ a [building with 192 floors]₁ $\rightarrow \dots$

- (7) Orcutt exampleRalph thinks that ortcutt is a spy, and Ralph doesn't think that ortcutt is a spy
- (8) Kaplanian approach

 $\exists f.f(w_1) = \text{orcutt } \& \text{ ralph think}_1 \ \lambda_2 \ \alpha(w_2) \in spy_2$

- \rightarrow vividness...
- \rightarrow f(w) = the shorstest spy in w
- \rightarrow f(w) = the person John is looking at in w