MIT OpenCourseWare
http://ocw.mit.edu

24.973 Advanced Semantics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5／6／09 TA Session Tue Trinh 24.073

Two kinds of third reading examples

（1）Mary wants to buy a［hat of mine］
mary want ${ }_{0}\left[\lambda_{2} \text { mary buy }_{2} \text { a［hat of mine }\right]_{0}$ ］
（i）$\left.\quad[\text { hhat of mine }]_{1}\right]^{g}=\{a, b, c\}$
（ii）$\forall \mathrm{w}^{\prime}$ compatible with what mary wants in $\mathrm{w}_{0}, \exists \mathrm{x} \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ such that mary buys x in w^{\prime}
（2）Mary wants to buy a［hat like mine］
mary want $\left.{ }_{0}\left[\lambda_{2} \text { mary buy }{ }_{2} \text { a［hat like mine }\right]_{0}\right]$
（i）$\left.\quad[\text { hhat like mine }]_{1}\right]^{\mathrm{g}}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$
（ii）$\forall \mathrm{w}^{\prime}$ compatible with what mary wants in $\mathrm{w}_{0}, \exists \mathrm{x} \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ such that mary buys x in w^{\prime}
\rightarrow Schwagger shows us a situation where（2）is predicted to be false，but felt to be true
（3）a．I have a red hat
b．red hats $=\{a, b, c\}$
b．Mary says：＇I want to buy a red hat，any will do＇
\rightarrow predicted：\llbracket Mary wants to buy a hat like mine $\rrbracket=0$
（4）Proof：
【Mary wants to buy a hat like mine】＝ 1 iff
$\forall \mathrm{w}^{\prime} \in \operatorname{want}\left(\mathrm{w}_{0}\right)$（mary）．$\exists \mathrm{x} \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ such that mary buys x in w^{\prime}
$\rightarrow \quad$ Suppose d is a red hat in w_{7} and mary buys only d in w_{7} ．Then $\mathrm{w}_{7} \in$ want $\left(\mathrm{w}_{0}\right)$（mary），but there is no $\mathrm{x} \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ such that mary buys x in w_{7}
（5）More detailed analysis of［hat like mine］
mary want ${ }_{0} \lambda_{2}{\text { mary } \text { buy }_{2} \text { a［hat }{ }_{2} \text { like }_{2} \text {［the hat }}_{0}$ that I have ${ }_{0}$ ］］
【Mary wants to buy a hat like mine】＝ 1 iff
$\forall \mathrm{w}^{\prime} \in \operatorname{want}\left(\mathrm{w}_{0}\right)$（mary）．$\exists \mathrm{x}$ s．t．in w^{\prime} ， x has the same color as the hat I have in $\mathrm{w}_{0} \&$ mary buys x in w^{\prime}
（6）Dubai Tower Problem
λ_{1} mary want $_{1} \lambda_{2}$ mary buy $_{2}$ a［building with 192 floors］$_{1}$
\rightarrow ．．．
（7）Orcutt example
Ralph thinks that ortcutt is a spy，and Ralph doesn＇t think that ortcutt is a spy
（8）Kaplanian approach
$\exists \mathrm{f} . \mathrm{f}\left(\mathrm{w}_{1}\right)=$ orcutt $\&$ ralph think ${ }_{1} \lambda_{2} \alpha\left(\mathrm{w}_{2}\right) \in$ spy $_{2}$
\rightarrow vividness．．．
$\rightarrow \mathrm{f}(\mathrm{w})=$ the shorstest spy in w
$\rightarrow f(w)=$ the person John is looking at in w

