Course information

- Negative Polarity Items and related phenomena
- Presentation and final paper

Plan for today

- Entailment and entailment-reversal
- The Condition: environments vs. operators
- Case studies: Interfering non-monotone quantifiers; so-called negated DPs

An initial paradigm

Any has a more restricted distribution than certain other determiners (say, a, every).
(1) a. Mary did ${ }^{*}$ (not) read any book.
b. Mary $\left\{{ }^{*}\right.$ often/rarely $\}$ read any book.
(2) Every student who read any book ate (*any) chocolate.

Some other expressions have more or less the same distribution as any, say, (even) a single book, though this comes apart in some environments (e.g., the restrictor of every)
(3) \%Every student who read (even) a single book ate chocolate.

Yet other expressions have more or less the opposite distribution, say, almost every, though complementarity may not hold in all environments (e.g., the restrictor of every, where both any and almost every are acceptable; cf. Spector 2014)
(4) a. Mary did (*not) read almost every book.
b. Mary $\{$ often/*rarely read almost every book.
(5) Every student who read almost every book ate chocolate.

Standard tasks

- Provide a descriptive generalization of when an any-DP is acceptable.
- Provide an explanation of this generalization.
(We will focus primarily on any in the course. See below for some discussion of almost.)

Getting at the relevant representations

Existential vs. universal quantification (e.g., esp., Ladusaw 1979)
(6) a. Candidate 1: \llbracket any $\rrbracket=\llbracket \mathrm{a} \rrbracket=\lambda \mathrm{P} \cdot \lambda \mathrm{Q} . \exists \mathrm{x}(\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x}))$
b. Candidate 2: \llbracket any $\rrbracket=\llbracket$ every*${ }^{*} \rrbracket=\lambda \mathrm{P} . \lambda \mathrm{Q} . \forall \mathrm{x}(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x}))$
(7) John didn't read any book.
a. Candidate 1: [neg [[any book] [$\lambda \mathrm{x}$ [John read x$]]]$]
b. Candidate 2: [every* book] [$\lambda \mathrm{x}$ [neg [John read x$]]]$
(8) a. Fact: for all $\mathrm{P}, \neg \exists \mathrm{xPx} \leftrightarrow \forall \mathrm{x} \neg \mathrm{Px}$
b. Candidate $1 \Leftrightarrow$ Candidate 2
(9) Every student who read any book ate chocolate.
a. Candidate 1: [every [student [$\lambda \mathrm{x}$ [any book] $\lambda \mathrm{y}[\mathrm{x}$ read y$]] \mathrm{J}]]$ [ate chocolate]
b. Candidate 2: [every* book] $[\lambda y[$ every [student $[\lambda x[x$ read $y]]]]][$ ate chocolate $]$
(10) a. Fact: for all P, q, where x is not free in $q,(\exists x(P x)) \rightarrow q \leftrightarrow \forall x(P x \rightarrow q)$
b. Candidate $1 \Leftrightarrow$ Candidate 2

Other quantifiers: rarely

(11) John rarely read any book.
(12) a. $\quad\left[\operatorname{rarely}_{C}[\right.$ any book] $[\lambda \mathrm{x}$ [John read x$\left.]]\right]$
b. $\quad[$ every* book $]\left[\lambda \mathrm{x}\right.$ [rarely ${ }_{C}[$ John read x$\left.\left.]\right]\right]$

$$
\begin{array}{lr}
\operatorname{card}\left(\{\mathrm{t} \in \mathrm{C} \mid \exists \mathrm{x}(\text { book } \mathrm{x} \wedge \text { John read } \mathrm{x} \text { at } \mathrm{t}\})<\mathrm{d}_{s t}\right. & \text { (observed) } \\
\Rightarrow \nRightarrow \mathrm{x}\left(\mathrm{x} \text { is a book } \rightarrow\left(\operatorname{card}(\{\mathrm{t} \in \mathrm{C} \mid \text { John read } \mathrm{x} \text { at } \mathrm{t}\})<\mathrm{d}_{s t}\right)\right) & (\text { not observed }) \tag{13}
\end{array}
$$

But perhaps rarely decomposes (= usually not; pace Ladusaw 1979):
$\left[\right.$ usually $_{C}[[$ every* book] $[\lambda \mathrm{x}[$ not $[$ John read x$]]]]]$

Other quantifiers: fewer than 5 boys

Fewer than 5 students read any book.
$\begin{array}{ll}\operatorname{card}(\lambda \mathrm{x} . \text { student } \mathrm{x} \wedge \exists \mathrm{y}(\text { book } \mathrm{y} \wedge \mathrm{x} \text { read } \mathrm{y}))<5 & \text { (observed) } \\ \Rightarrow \forall \mathrm{y}(\text { book } \mathrm{y} \rightarrow \operatorname{card}(\lambda \mathrm{x} \text {. student } \mathrm{x} \wedge \mathrm{x} \text { read } \mathrm{y})<5) & \text { (not observed) }\end{array}$
$\underset{\notin}{\Rightarrow} \forall \mathrm{y}($ book $\mathrm{y} \rightarrow \operatorname{card}(\lambda \mathrm{x}$. student $\mathrm{x} \wedge \mathrm{x}$ read y$)<5) \quad$ (not observed)
Decomposition does not obviously help here (cf., e.g., Hackl 2000; Heim 2008).

Trapping effects

(17) Fewer than 10 presidents $_{i}$ read any books about themselves ${ }_{i}$.
(18) John didn't want to marry any plumber. [de dicto]
(19) There isn't any book here. [definiteness effect]

Further support for the relevance of the LF (cf., e.g., Progovac 1994)
(20) A professor with any interest is not available.
(21) a. A professor with any interest seemed not to be available.
b. *A professor with any interest ${ }_{i}$ seemed to $\operatorname{herself}_{i}$ not to be available.
(22) a. [seem [not [[a professor with any interest] be available]
b. *[a professor with any interest] $\lambda \mathrm{x}$ [x seem to herself ${ }_{x}$ [not x be available]
(23) A professor with any interest seemed to fewer than 5 students to be available.
(24) a. [seem to fewer than 5 students [[a prof with any interest] be available]]
b. *[a prof with any interest] $\lambda \mathrm{x}$ [x seem to fewer than 5 students [x be avail.]]

Some attention to surface form is needed nonetheless:
(25) *Any professor seemed not to be available. (e.g., Uribe-Etxebarria 1995)

Another issue: interaction with Quantifier Raising
(26) $\quad<^{*}>$ A professor with any interest (seemed to have) read fewer than 5 books.

Better example (by Danny Fox, due to a potential confound involving the limited scope interactions of indefinites with certain other quantifiers, raised by Keny Chatain):
(27) a. A flag with stripes is hanging from fewer than 5 windows.
b. *A flag with any stripes is hanging from fewer than 5 windows.

The Condition: Schema

a. LF: [OP [... any ...] ...]
b. $\quad \mathrm{OP} \in\{$ neg, every, fewer than 5 , fewer than 5 students $\}$
(29) The Condition (schema, holds at LF):

A DP headed by any is acceptable if and only if it stands in relation \mathbf{R} to \mathbf{X}.

The Condition: Negative, Affective, etc., Operators

a. $\quad \mathbf{R}=$ be c-commanded by
b. $\quad \mathbf{X}=$ negation

Finding negation (cf. discussion of rarely, fewer than 5 students above)
(31) a. $\quad[$ every student VP $]=\left[\left[\operatorname{NOT}\left[\operatorname{SOME}_{N}\right.\right.\right.$ student $\left.\left.]\right] \mathrm{VP}\right]$
b. $\quad \llbracket \mathrm{NOT} \rrbracket=\lambda \mathrm{Q}_{((e t) t)} \cdot \lambda \mathrm{P}_{(e t)} . \neg \mathrm{Q}(\mathrm{P})$
c. $\llbracket \operatorname{SOME}_{N} \rrbracket=\lambda \mathrm{P}_{(e t)} \cdot \lambda \mathrm{Q}_{(e t)} . \exists \mathrm{x}(\mathrm{Px} \wedge \neg \mathrm{Qx})$
(32) a. [NOT [SOME_{N} student who read any book]] [ate chocolate]
b. *[NOT $\left[\operatorname{some}_{N}\right.$ student]] [ate any chocolate]

But a parallel analysis can be provided for some. A more adequate predictor is needed.

Entailment-reversal

a. John read a book.
b. $\stackrel{\gtrless}{\gtrless}$ John read a (Russian) book (slowly).
(34) a. John did not read a book.
b. $\quad \underset{ }{\sharp}$ John did not read a (Russian) book (slowly).
(35) a. John often read a book.
b. 芙 John often read a (Russian) book (slowly).
a. Every student read a book.
b. $\stackrel{\gtrless}{\gtrless}$ Every student read a (Russian) book (slowly).
a. Every student who read a book ate chocolate.
b. $\underset{\notin}{\Rightarrow}$ Every student who read a (Russian) book (slowly) ate chocolate.

How to capitalize on this suggestive pattern?

Operators

Cross－categorial definition of entailment (\Rightarrow)

（39）a．For p, q of type $\mathrm{t}: \mathrm{p} \Rightarrow \mathrm{q}$ iff $\mathrm{p}=0$ or $\mathrm{q}=1$ ．
b．For f, g of conjoinable type $\sigma \tau$ ： $\mathrm{f} \Rightarrow \mathrm{g}$ iff for every x of type $\sigma, \mathrm{f}(\mathrm{x}) \Rightarrow \mathrm{g}(\mathrm{x})$ ．
（40）a．t is a conjoinable type．
b．if τ is a conjoinable type，then for all types $\sigma,(\sigma \tau)$ is a conjoinable type．
（41）a．IP：$\llbracket \mathrm{John}$ read a Russian book $\rrbracket \Rightarrow$ John read a book \rrbracket
b．VP：$\lambda \mathrm{x}$ ．$\llbracket \mathrm{a}$ Russian book $\rrbracket(\lambda \mathrm{y} . \mathrm{x}$ read y$) \Rightarrow \lambda \mathrm{x}$ ．$\llbracket \mathrm{a}$ book $\rrbracket(\lambda \mathrm{y}$ ．x read y$)$
c．DP：\llbracket a Russian book \rrbracket a book \rrbracket

Entailment－reversing，entailment－preserving，non－monotone functions

（42）A function f of type $(\sigma \tau)$ is entailment－reversing（downward－entailing）iff for all x ， y of conjoinable type σ ：if $\mathrm{x} \Rightarrow \mathrm{y}$ ，then $\mathrm{f}(\mathrm{y}) \Rightarrow \mathrm{f}(\mathrm{x})$ ．
（43）A function f of type $(\sigma \tau)$ is entailment－preserving（upward－entailing）iff for all x ， y of conjoinable type σ ：if $\mathrm{x} \Rightarrow \mathrm{y}$ ，then $\mathrm{f}(\mathrm{x}) \Rightarrow \mathrm{f}(\mathrm{y})$ ．
（44）A function f of type $(\sigma \tau)$ is non－monotone iff f is neither entailment－reversing nor entailment－preserving，that is，iff for some $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u}$ of conjoinable type σ ： $x \Rightarrow y$ and $f(x) \nRightarrow f(y)$ ，and $z \Rightarrow u$ and $f(u) \nRightarrow f(z)$ ．

Illustrations

【not】 is entailment－reversing．（modus tollens）
For all p, q of type t ，if $p \Rightarrow q$ ，then $\llbracket n o t \rrbracket(q) \Rightarrow \llbracket n o t \rrbracket(p)$ ．
【every】 is entailment－reversing．（transitivity）
For all $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ of type（et），if $\mathrm{P} \Rightarrow \mathrm{Q}$ ，then \llbracket every $\rrbracket(\mathrm{Q})(\mathrm{R}) \Rightarrow \llbracket$ every $\rrbracket(\mathrm{P})(\mathrm{R})$ ．
（47）【every student】 is not entailment－reversing．
\llbracket every student $\rrbracket(\llbracket$ arrived $\rrbracket) \nRightarrow \llbracket$ every student $\rrbracket(\llbracket$ arrived early $\rrbracket)$
（48）【every student』 is entailment－preserving．（transitivity）
For all P, Q, R of type（et），if $P \Rightarrow Q$ ，then \llbracket every $\rrbracket(R)(P) \Rightarrow \llbracket$ every $\rrbracket(R)(Q)$ ．
（49）【between 4 and 8 students】 is non－monotone．
【between 4 and 8 students』（ $\lambda \mathrm{x}$ ．【a Russian book】（ $\lambda \mathrm{y}$ ．x read y$)$ ）

$$
\underset{\neq}{\nLeftarrow} \llbracket \text { between } 4 \text { and } 8 \text { students } \rrbracket(\lambda \mathrm{x} . \llbracket \mathrm{a} \text { book } \rrbracket(\lambda \mathrm{y} . \mathrm{x} \text { read } \mathrm{y}))
$$

(50) The Condition (preliminary, operator-based)

A DP headed by any is acceptable if and only if it is c-commanded by an expression that denotes an entailment-reversing (ER) function.

The Condition: Entailment-Reversing Environments

Entailment-reversing environments

Function-based (or position-based) statement (cf. Homer 2008)
(51) A constituent C is ER with respect to a subconstituent Q of type σ iff $\lambda \mathrm{x}_{\sigma}$. $\llbracket \mathrm{C}\left[\mathrm{Q} / \mathrm{t}_{\sigma}\right] \rrbracket^{g[t \rightarrow x]}$ is an ER function. (A constituent $\mathrm{C}\left[\mathrm{Q} / \mathrm{t}_{\sigma}\right]$ is identical to C except that Q is replaced by a variable t of the same type as Q .)

Substitution-based statement (cf. Gajewski 2011)
(52) A constituent C is ER with respect to a subconstituent Q iff for every Q ' such that $\llbracket \mathrm{Q}^{\prime} \rrbracket \Rightarrow \llbracket \mathrm{Q} \rrbracket, \llbracket \mathrm{C} \rrbracket \Rightarrow \llbracket \mathrm{C}\left[\mathrm{Q} / \mathrm{Q}^{\prime}\right] \rrbracket$. (A constituent $\mathrm{C}\left[\mathrm{Q} / \mathrm{Q}^{\prime}\right]$ is identical to C except that Q is replaced by Q^{\prime}.)

Illustration

(53) $\llbracket[D P$ every student $[\lambda \mathrm{x}[$ any book $[\lambda \mathrm{y}[\mathrm{x}$ read y$]]]]] \rrbracket$ is ER wrt any book.
(54) $\llbracket[S$ [every student $[\lambda \mathrm{x}$ [any book $[\lambda \mathrm{y}[\mathrm{x}$ read y$]]]]]$ arrived $] \rrbracket$ is ER wrt any book.
(55) The Condition (preliminary, environment-based)

A DP headed by any is acceptable if and only if it is dominated by a constituent that is ER with respect to it.

What's coming up next?

- Do the two conditions have to be further constrained?
- Do we need to admit a constraint pertaining to locality? For this, we will look at the effects of embedded non-monotone quantifiers.
- Are there any restrictions on what the constituent has to be in the case of the environment-based characterization? For this, but mainly as a warm-up for next section, we will probe the behavior of any (and almost) in structures with so-called negated DPs.
- What is the relation between the two characterizations of the Condition?
- Are the two statements of the Condition (or their updated variants) distinguishable? Are they independent? For this, we will first investigate the distribution of any in the scope of modified numeral quantifiers. (We will also get at the above question by doing that.)

Non-monotonicity: a tentative argument for environments?

(56) Mary didn't point between 4 and 8 recruiters to any students.
a. *[neg [between 4 and 8 rec's [$\lambda \mathrm{y}$ any students $\lambda \mathrm{x}$ Mary point y to x$]$]
b. [neg [any students [$\lambda \mathrm{x}$ between 4 and 8 rec's [Mary point y to x$]$]
(58) Distinguishing scenarios:
a. Mary pointed to each of her 3 students 2 recruiters (that is, altogether 6 recruiters were pointed to students). (57-a) \boldsymbol{X}, (57-b) $\boldsymbol{\checkmark} ;(56)<\boldsymbol{\checkmark}>$
b. Mary pointed to each of her 3 students 5 recruiters (that is, altogether 15 recruiters were pointed to students). (57-a) $\boldsymbol{\checkmark}$, (57-b) $\boldsymbol{x} ;(56)<\boldsymbol{x}>$

Contrast with sentences in which movement is blocked:
(59) *Mary didn't introduce between 4 and 8 students $_{i}$ to any of their ${ }_{i}$ partners.

This is expected on the environment-based Condition:
(60) 【(57-a)】 is not, but $\llbracket(57-\mathrm{b}) \rrbracket$ is, ER with respect to any books.

But it is not expected on the operator-based Condition:
(61) [not] c-commands [any book] in both (57-a) and (57-b).

A modification of the operator-based characterization is needed. For example (we will ignore the modification until we get to intervention):
(62) The Condition (revised, preliminary)

A DP headed by any is acceptable if and only if it is c-commanded by an ER operator that doesn't c-command an NM operator that would c-command any.

Important caveat．These facts perhaps only apparently advantage the environment－ based approach．Consider the following sentence：
（63）She didn＇t wear any earrings to every party．（Linebarger，1987）
（64）a．［not［any earrings $\lambda \mathrm{x}$［she wore x to every party］］］
b．＊［not［［any earrings $\lambda \mathrm{x}$ she wore x$]$ to every party］］
c．［every party $\lambda \mathrm{y}$［not［any earrings $\lambda \mathrm{x}$ she wore x to y$]]$ ］
（65）［I think that to every party she wore a different pair of earrings，and it is common knowledge that she wore earrings to at least one party：］ $<\#>$ I doubt that she didn＇t wear any earrings to every party．
（66）a．＊She didn＇t introduce every person ${ }_{i}$ to any of their ${ }_{i}$ admirers．
b．＊Not every student read any book．

Accordingly，the assumption that will capture this state of affairs may well subsume the facts with non－monotone quantifiers．Stay tuned（and check Chierchia 2013）．

So－called negated DPs：identifying licensing environments

See，e．g．，Collins 2017a，b for some recent discussion．
（67）Not every student who read any book arrived．
（68）Candidate structures：
a．$*\left[\left[{ }_{D P}[D\right.\right.$ not every］student［wh $\lambda \mathrm{x}$［any book］$\lambda \mathrm{y} \mathrm{x}$ read y$\left.]\right]$ arrived］
b．［［DP not［ D_{P} every student［wh $\lambda \mathrm{x}$［any book］$\lambda \mathrm{y} \mathrm{x}$ read y$\left.\left.]\right]\right]$ arrived］
c．［ ${ }_{S}$ not［ S［every student［wh $\lambda \mathrm{x}$［any book］$\lambda \mathrm{y}$ x read y$]$ ］arrived］］
Unavailable parse
（69）$\quad \llbracket$ not every $\rrbracket=\lambda$ P．$\lambda \mathrm{Q} . \neg \forall \mathrm{x}(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x}))$
（70）a．【not every】 is not an ER function．
b．［［not every］student［wh $\lambda \mathrm{x}$［any book］$\lambda \mathrm{y} \mathrm{x}$ read y$]$ ］（［arrived］）is not ER with respect to［any book］．

Available parses
（71）【every】 is an ER function．
（72）［every student［wh $\lambda \mathrm{x}$［any book］$\lambda \mathrm{y} \mathrm{x}$ read y$]$ ］is ER wrt［any book］：
For all $\mathrm{Q}, \mathrm{Q} \Rightarrow$ 【any／a book】，
$\llbracket[$ every student $[\lambda \mathrm{x}$［any book］$\lambda \mathrm{y}$ x read y$]]] \rrbracket$
$\Rightarrow \llbracket[$ every student $[\lambda \mathrm{x}$ Q $\lambda \mathrm{y}$ x read y$]]] \rrbracket$
That is,
For all Q and $\mathrm{R}, \mathrm{Q} \Rightarrow$ 【any/a book \rrbracket,
$\llbracket[$ every student $[\lambda \mathrm{x}$ [any book] $\lambda \mathrm{y}$ x read y$]]] \rrbracket(\mathrm{R})$
$\Rightarrow \llbracket[$ every student $[\lambda \mathrm{x}$ Q $\lambda \mathrm{y}$ x read y$]]\rfloor](\mathrm{R})$
(And, therefore, [[every student [wh $\lambda \mathrm{x}$ [any book] $\lambda \mathrm{y} \mathrm{x}$ read y$]$] arrived] is also ER wrt [any book].)

What about negated modified numeral quantifiers?
(73) $<>$ Not fewer than 5 students read any book.
(74) Candidate structures (no decomposition of the modified numeral):
a. *[[not fewer than 5] students] [$\lambda \mathrm{x}$ [any book [$\lambda \mathrm{y}$ [x read y$]$
b. *[not [fewer than 5 students]] [$\lambda \mathrm{x}$ [any book [$\lambda \mathrm{y}$ [x read y]
c. [not [[fewer than 5 students [$\lambda \mathrm{x}$ [any book [$\lambda \mathrm{y}$ [x read y]

Could not end up being in a configuration resembling that in (74-c) by movement - one on which we have two ER operators c-commanding any book? To get at this question, compare (73) with (75):
(75) $<?^{*}>$ No fewer than 5 students read any book.

Finally, note that the reverse may be expected if we had an expression whose distribution under (non-auxiliary) negation and fewer than quantifiers were the reverse of that of any. (A DP-internal construal of no may be needed in (77).)
(76) $\quad<^{*}>$ Not fewer than five students almost arrived.
$<>$ No fewer than five students almost arrived.

References

Chierchia, Gennaro. 2013. Logic in grammar. Oxford: Oxford University Press.
Collins, Chris. 2017a. The distribution of negated quantifier phrases in English. NYU. Manuscript.

Collins, Chris. 2017b. A scope freezing effect with negated quantifier phrases. Natural Language Semantics 25(4). 315-327.

Gajewski, Jon. 2011. Licensing strong NPIs. Natural Language Semantics 1-40.
Hackl, Martin. 2000. Comparative quantifiers: MIT dissertation.

Heim, Irene. 2008. Decomposing antonyms. In Proceedings of Sinn und Bedeutung, vol. 12, 212-225.

Homer, Vincent. 2008. Disruption of NPI licensing: The case of presuppositions. In Semantics and linguistic theory, vol. 18, 429-446.

Ladusaw, William. 1979. Polarity sensitivity as inherent scope relations: University of Texas, Austin, PhD dissertation.

Linebarger, Marcia C. 1987. Negative polarity and grammatical representation. Linguistics and Philosophy 10(3). 325-387.

Progovac, Ljiljana. 1994. Negative and positive polarity: a binding approach. Cambridge University Press.

Spector, Benjamin. 2014. Global positive polarity items and obligatory exhaustivity. Semantics and Pragmatics 7(11). 1-61.

Uribe-Etxebarria, Myriam. 1995. Negative polarity item licensing, indefinites and complex predicates. In Proceedings of SALT 5, vol. 12, 346-361.

MIT OpenCourseWare
https://ocw.mit.edu/
24.979 Topics in Semantics: Negative Polarity Items

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

