Lecture #10

24.979 Topics in Semantics

Luka Crnič

Presentation/squib:

- Puzzles, criticisms, new theories
- Deadline: 3 days before the grade deadline

What's coming up?

• Some predictions & some challenges (incl. intervention)

The Condition (cf. Kadmon & Landman 1993)
 A DP headed by *any* is acceptable only if its resource domain is dominated by a constituent that is SER, but not SEP, with respect to it.

There were three ingredients ('rescue mechanisms') to our account:

- Exhaustification (free choice inferences)
- Existence presupposition
- (Obligatory) pruning of alternatives

A host of predictions on the basis of the properties of these:

- Definiteness effects; Presuppositions (Intonation, etc.)
- Universal (vs existential) modals; Scope (reconstruction)
- Mass nouns (*any* differential phrases)

Warm-up: Restrictor approach to conditionals

There is a puzzle for the 'restrictor' view of conditionals (Hsieh 2013):

- (2) If you read any of these books, you must/might understand this topic.
- (3) a. [□ [if you read any book] [you are happy]]
 b. #[◊ [if you read any book] [you are happy]] (predicted)

Free choice to the rescue (+ no strong construal of *any* necessary):

(4) $[exh_R [\Diamond [if you read any book] [you are happy]]]$

However, this cannot be the final word on the issue:

- (5) If you ever read Ladusaw, you might understand NPIs.
- (6) If this salad has any iron in it, it may be dangerous to eat.

Possible response: "C-reading" (cf. Frank 1996; cf. Hsieh 2013 for alternatives)
(7) [□ [if you ever read Ladusaw] [◊ [you understand NPIs]]]

Loose ends (wrt free choice)

Hindi-NPIs and even

Non-modal monotone environments

Non-modal Strawson monotone environments

Modal (monotone) environments

Two further facts about Hindi-NPIs

Loose ends (wrt free choice)

Generics

- (8) Any owl hunts mice.
- (9) Dogs bark at anything.

Imperatives

- (10) Go ahead, take any apple.
- (11) To continue, press any key.

Subtrigging

- (12) John talked to any student that came to his office hours.
- (13) Mary responded confidently to any objection.

Our recipe/system (= rescuing by exhaustification/strong construal): All these constructions should have an underlying existential (modal) semantics. More specifically, one should be able to account for the following entailment patterns...

Suggestive entailment patterns

Generics

- (14) a. Any owl hunts mice.
 - b. \Rightarrow_s Any barn owl hunts mice.
- (15) a. Dogs bark at anything.
 - b. \Rightarrow_s Dogs bark at any squirrely things.

Subtrigging

- (16) a. John talked to any student that came to his office hours.
 - b. \Rightarrow_s John talked to any smart student that came to his office hours.
- (17) a. Mary responded confidently to any objection.
 - b. \Rightarrow_s Mary responded confidently to any serious objection.

Imperatives (kind of)

- (18) a. Go ahead, take any apple.
 - b. ' \Rightarrow_s ' Go ahead, take any red apple.

Generics

Free choice inferences (cf. Nickel 2010)

- (19) Elephants live in Asia or Africa \Rightarrow Elephants live in Asia/Africa.
- (20) Dogs bark at cats or squirrels \Rightarrow Dogs bark at cats/squirrels.

Probing quantificational force: existential vs. universal quantification

(21)	a.	Does John eat artichokes?	(cf. Menéndez-Benito 2012)
	b.	This car goes 200 kmh.	

- (22) a. Dogs don't bark. (cf., e.g., Bar-Lev 2018)
 - b. \approx No dogs bark.
 - c. $\not\approx$ Not every dog barks.
- (23) a. Where can I get gas? (mention some reading \checkmark) (cf. Fox 2018)
 - b. Where must/did I get gas? (mention some reading X)
 - c. What do dogs bark at? (mention some reading \checkmark)

Two strategies for getting apparent universal quantification:

i. Nickel: "There is a natural way of being X such that every instance of..."

ii. Bassi & Bar-Lev/Staniszewski: existential modal universal modal

Generic and other adverbial quantifiers

Potential support for the 'free choice' strategy (vs. 'restrictor' strategy)

- (24) A dog always/rarely barks.
 - a. \approx All/few dogs bark.
 - b. $~\approx$ All dogs always/rarely bark .
- (25) Any dog always/rarely barks.
 - a. $\approx AII/few dogs bark.$
 - b. \approx All dogs always/rarely bark.

What blocks the (a)-reading? There are several conceivable candidates...

- (26) a. $[exh_R [GEN_C any_D^{str} dog bark]]$ b. $[exh_R [\Diamond any_D^{str} dog bark]]$ c. $\#[always_C any D_D^{str} dog barks_F]$
- (27) a. <>Pulling an all-nighter always rescues any student.
 - b. $<\approx>$ Every student is s.t. pulling an all-nighter rescues them.

(cf. Daval 1998)

Imperatives

Discourse particles as probes into quantificational force (Grosz, Kaufmann)

- (28) a. You may RUHIG/#JA go home.
 - b. You must # RUHIG/JA go home
- (29) Take RUHIG/JA an apple.

If generics (Nickel, Menéndez-Benito) and imperatives (Kaufmann) may have existential semantics, *any* can be treated exactly as in existential modal sentences:

- (30) a. $[exh_R [\Diamond_{IMP} [any_D^{str} cookie [\lambda x you take x]]]]$
 - b. $[exh_R [GEN_C [any_D^{str} cookie [\lambda x you take x]]]]$

Furthermore, the expectation is that, all else being equal, imperatives with *any* might not allow for a universal quantificational construal, at least on the most straightforward lexical ambiguity approach. (Optional homework: What is predicted by the application of Bassi & Bar-Lev/Staniszewski strategy?)

(31) Naive prediction: Take RUHIG/#JA any apple.

Subtrigging

Accordingly, we may want to conclude that (temporally restricted) generic(-like) operator is at play with subtrigging examples like (32-a) (cf. von Fintel 1996, Menéndez-Benito 2005):

- (32) a. Barack liked any picture that Michelle gave him.
 - b. $[exh_R [GEN_{C \cap Restr} [any pic_x that M gave him x]_x B liked x]]$

Is the import of the relative clause underestimated? Matching relatives possible:

- (33) a. <u>Barack</u> liked any picture of <u>himself</u> that Michelle gave him. ✓
 - b. Barack liked any picture of herself that Michelle gave him.

Many questions: partitives, plurals

- (34) a. John read any of those books that he found.
 - b. $\ <> \mathsf{Dogs}$ bark at any of those objects.
- (35) a. John read any books that he found.b. #Dogs bark at any squirrels.

Even more questions: Other items in other languages? (cf. Chierchia 2013)

(36) The Condition (cf. Kadmon & Landman 1993) A DP headed by any is acceptable only if its resource domain is dominated by a constituent that is SER, but not SEP, with respect to it.

Obvious theoretical question: What explains the Condition?

Hindi-NPIs and even

Entailment-preserving environments

(37) *koii bhii aayaa 'anyone came'

Entailment-reversing environments

(38) koii bhii nahiiN aayaa 'anyone not came'

Modal environments

- (39) koii bhii aadmii is mez-ko uThaa saktaa hai 'any man this table lift can'
- (40) *kisii-ko bhii ghar jaana caahiye 'anyone home go must'

(41) koii bhii = indef + even

Constraint on focus association

- (42) Fact: *Even* must associate with an F-marked expression, and it may only associate with F-marked expressions that it c-commands when internally merged.
- (43) a. John_F seems to even read War and Peace. (Yoshitaka 2018)
 b. #John_F wants to even read War and Peace.

Structure of koii bhii phrases and formal alternatives to different associates:

- (44) [[indef D] $even_C$] NP]
 - a. Potential focus #1: indef ALT: every
 - b. Potential focus #2: D
 - c. Potential focus #3: [indef D] ALT: indef Ds, every Ds

Hypothesis: Choose your associate (/F-mark) freely. (Potential for variation!)

ALT: other Ds

Even

- (45) a. John read even War and Peace
 - b. [even_C War and Peace_F] [λx [John read x]]
 - c. Simpler: [even_C [John read War and Peace_F]] (one may get distinguishable predictions elsewhere)
- (46) $[even_C S]^c(w)$ is defined only if
 - a. $\exists S' \in F(S) \cap \llbracket C \rrbracket$: $\llbracket S \rrbracket \neq \llbracket S' \rrbracket \land \llbracket S' \rrbracket(w) = 1$, and
 - $b. \quad \forall S' \in \mathsf{F}(S) \cap \llbracket C \rrbracket \colon \llbracket S \rrbracket \neq \llbracket S' \rrbracket \to \mathsf{P}_c(\llbracket S \rrbracket) < \mathsf{P}_c(\llbracket S \rrbracket).$

If defined, $\llbracket even_C S \rrbracket^c(w) = 1$ iff $\llbracket S \rrbracket(w) = 1$.

(e.g., Karttunen & Peters 1979, Francis 2018, i.a.)

(47) [even_C [John read War and $Peace_F$]]

- a. A: John read War and Peace
- b. P1: $\exists x (x \neq WP \land John read x)$
- $c. \quad \mathsf{P2:} \ \forall x (x {\neq} \mathsf{WP} \rightarrow \mathsf{P}_c(\mathsf{J} \text{ read } \mathsf{WP}) < \mathsf{P}_c(\mathsf{J} \text{ read } x))$

Non-modal monotone environments

Basic principle of probability (and many alternatives):

(48) If p (contextually) entails q (in c), $P_c(p) \leq P_c(q)$.

Structure on the assumption that *koii* is focused:

- (49) a. #John read KOII BHII book
 b. [even_C [[indef_F D] book]_x [John read x]]
- $(50) \quad F([[indef_F D] book]_x [John read x]]) = \\ \{[[indef D] book]_x [John read x]], [[every D] book]_x [John read x]]\}$
- (51) a. P1: John read every book
 - b. P2: P_c(J read some book) < P_c(J read every book) (both problematic if 'every' entails 'some')

Wide-scope of even (e.g., Karttunen & Peters 1979 on movement of even)

- (52) a. John didn't read KOII BHII book
 - b. $[even_C [neg [[indef_F D even_C] book]_x [John read x]]]$
- (53) $\begin{array}{l} \mathsf{F}([\mathsf{neg}\ [[\mathsf{indef}_F\ D]\ \mathsf{book}]_x\ [\mathsf{John}\ \mathsf{read}\ x]]) = \\ \{[\mathsf{neg}\ [[\mathsf{indef}\ D]\ \mathsf{book}]_x\ [\mathsf{J}\ \mathsf{read}\ x]],\ [\mathsf{neg}\ [[\mathsf{every}\ D]\ \mathsf{book}]_x\ [\mathsf{J}\ \mathsf{read}\ x]]\} \end{array}$
- (54) a. P1: \neg (John read every book) b. P2: P_c(\neg (J read some book)) < P_c(\neg (J read every book))

- (55) a. John didn't read any book.
 - b. #John read any book.

Other association patterns possible:

An issue arises with these choices, however. Consider the following characterizations of the potential sets of alternatives (which would lead us to predict unacceptability for (a)- and potential acceptability for (b) examples above):

- (58) a. $[even_C [neg [[indef D_F] book]_x [John read x]]]$
 - $\mathsf{b.} \quad \{[\mathsf{neg} \ [[\mathsf{indef} \ \mathsf{D'}] \ \mathsf{book}]_x \ [\mathsf{John} \ \mathsf{read} \ x]] \mid [\![\mathsf{D}]\!] \subset [\![\mathsf{D'}]\!] \} \cap [\![\mathsf{C}]\!] \neq \emptyset$
- (59) a. $[even_C [[indef D_F] book]_x [John read x]]$
 - b. $\llbracket C \rrbracket = \{ \llbracket \text{indef D'} \mid \text{book} \end{bmatrix}_x \llbracket \text{John read x} \mid \llbracket D' \rrbracket \nsubseteq \llbracket D \rrbracket \}$

Some possible constraints on pruning (cf. Chierchia and Krifka)

- (60) *[even_C S] if ALT(S)\[C]] ⊈ Excl_F(S). (where Excl_F(S) is the set of excludable alternatives given S and the focus alternatives to S; that is, you are only allowed to prune excludable alternatives, cf. Katzir 2014)

Avoiding overgeneration:

(62) a. [even_C [[indef D_F] book]_x [John read x]]
b. #C = {[[indef D'] book]_x [John read x] | [[D']] ∩ [[D]] = Ø}
c. {[[indef D'] book]_x [John read x] | [[D']] ⊆ [[D]]} ⊆ [[C]] ✓

Avoiding undergeneration:

- (63) a. $[even_C [neg [[indef D_F] book]_x [John read x]]]$
 - b. {[neg [[indef D'] book]_x [John read x]] | $\llbracket D \rrbracket \subset \llbracket D' \rrbracket$ } $\subseteq \operatorname{Excl}_F([\operatorname{neg} [[indef D_F] book]_x [John read x]]])$
 - $\mathsf{c}. \quad \{[\mathsf{neg} \ [[\mathsf{indef} \ \mathsf{D'}] \ \mathsf{book}]_x \ [\mathsf{John} \ \mathsf{read} \ x]] \mid [\![\mathsf{D}]\!] {\subset} [\![\mathsf{D'}]\!] \} {\cap} [\![\mathsf{C}]\!] {=} \emptyset \not$

Non-modal Strawson monotone environments

Strawson environments: comparing partial propositions

What scalar presupposition is computed when the associate is in a non-monotone-Strawson-monotone environments? Different assumptions are possible...

- (64) Assumption 1: Presupp's of all the alternatives must be satisfied. (X)
- (65) a. The students who read KOII BHII book arrived on time.b. #For every book: There are students who read it.
- (66) Assumption 2: Presupp's of all the alternatives are Bochvar'ed. (X)
- (67) a. I am sorry that John read KOII BHII book. b. $P_c(John read a book \land ...) < P_c(John read War and Peace \land ...)$
- (68) Assumption 3: Conditionalization on minimal revisions of context c such that the respective comparanda are defined with respect to them. (See von Fintel 2001, et al, on the technicalities of revision.) (✓)
- (69) Assumption 4: Comparison only between defined alternatives. (\checkmark)

(See Cremers et al. 2016 for related discussion on probability and partiality.)

Strawson environments

Strawson EP environments

- (70) *The student who read any books arrived.
- (71) $\#P_c(\max(\text{student who read some books}) \text{ arrived})$

 $< P_c(max(student who read some long books) arrived),$

where $\mathsf{c}\subseteq\mathsf{there}$ is a unique student who read some long books

Desirable consequence

(72) Fact: The 'not SEP' clause of the Condition falls out from the scalar presupposition of *even* – due to the contextual equivalence of the alternatives in contexts in which the alternatives are defined.

Strawson ER environments

- (73) The students who read any books arrived.
- (74) $P_c(\max(\text{students who read some books}) \text{ arrived})$

 $< P_c(max(students who read some long books) arrived),$ where c \subseteq there are students who read some long books • Standard definition of even:

 $({\sf i})$ scalar presupposition and $({\sf ii})$ additive presupposition.

- Unconstrained association, but constrained pruning (sometimes necessary)
- Scalar presuppositions conditionalized on
 - (i) "the minimally revised context" or
 - (ii) "the context" (plus relativization to defined alternatives).
- Consequences (so far)
 - (i) Strawson EP environments: contradictory presuppositions, and
 - (ii) Strawson ER environments: almost tautologous presuppositions

(Assumption: presuppositions that are unsatisfiable no matter the lexical material yield ungrammaticality, see Gajewski 2002, i.a.)

Modal (monotone) environments

Assume first association of even with the domain:

b. [even_C [exh_R [\Diamond [any^{str}_{D_F} book [λ x John read x]]]]

$$(76) \qquad P1: \ \exists p \in \{ \land_{x:book \cap D'} \Diamond (J \text{ read } x) \ (\land \ ...) \ | \ D' \in ALT(D) \} \cap C: \ p(w)$$

$$\begin{array}{ll} (77) & \mathsf{P2:} \ \forall \mathsf{p} \in \{\wedge_{x:book \cap D'} \Diamond (\mathsf{J} \ \mathsf{read} \ \mathsf{x}) \ (\land \ \ldots) \ | \ \mathsf{D'} \in \mathsf{ALT}(\mathsf{D})\} \cap \mathsf{Ci} \\ & \mathsf{p} \neq \land_{x:book \cap D} \Diamond (\mathsf{J} \ \mathsf{read} \ \mathsf{x}) \ (\land \ \ldots) \ \to \\ & \mathsf{P}_c(\land_{x:book \cap D} \Diamond (\mathsf{J} \ \mathsf{read} \ \mathsf{x}) \ (\land \ \ldots)) < \mathsf{P}_c(\mathsf{p}) \end{array}$$

Pruning of excludable alternatives is licit:

(78) $C \subseteq \{ [exh_R [\Diamond [any_{D'}^{str} book [\lambda x John read x]]] | [D']] \in [D] \}$

On this assumption about C, P2 is (almost) a tautology since the prejacent Strawson entails all the alternatives. Thus, *any* is predicted to be acceptable.

Universal modals

- (79) a. *John is required to read KOII BHII book.
 - b. $[even_C [exh_R [\Box [[indef D_F book]_x John read x]]]]$

Recall that we entertained two sets of alternatives that yield free choice:

- (80) Universal modal alternatives only (illegitimate, strictly speaking) □(J read a book in D) ∧ ∀D': D'⊂D∩book → ¬□(J read a book in D')
- (81) Universal and existential modal alternatives $\Box(J \text{ read a book in } D) \land \forall D': D' \subset D \cap book \land D' \cap book \neq \emptyset$ $\rightarrow \Diamond(J \text{ read a book in } D')$

Whether we derive the correct predictions depends to some extent on the constraint on pruning (recall 'excludable=prunable' or 'all and only subdomain'). We stick to the 'subdomain only' variant in the following for simplicity. Assumption: All (and only) the subdomain alternatives are relevant.

- (82) a. *John is required to read KOII BHII book.
 - b. $[even_C [exh_R [\Box [[indef D_F book]_x John read x]]]]$

Additive presupposition and assertion clash:

(83) Assertion: \Box (J read a book in D) \land \forall D': D' \subset D \cap book $\rightarrow \neg\Box$ (J read a book in D')

(84) P1: $\exists D'(D' \subset D \cap book \land \Box(J read a book in D') \land \forall D'': D'' \subset D' \cap book \rightarrow \neg\Box(J read a book in D'')$

(85) a. koii bhii NP = any NP = [[[indef D] even] NP]

- b. Even may take scope at any clausal level
- c. Scalar presupposition subject to some constraints
- d. Conditionalization on the (minimally revised) "actual context"

Some consequences

- Strawson EP environments: X
- Strawson ER environments: 🗸
- Existential modal environments: 🗸
- Universal modal environments: X (to be revisited)

Nonetheless, the theory imposes a weaker constraint than the Condition – it does not rule out occurrences of *any* in non-monotone environments...

Two further facts about Hindi-NPIs

A higher attachment of *bhii* results in a broader distribution:

(86) koii laRkaa bhii aayaa
 indef boy bhii arrived
 'Even some boy arrived'

This follows from an additional association possibility for even:

(87) a. #[[[indef D] even] NP_F]
 b. [[[indef D] NP_F] even]

Dayal (1995, 1996) discusses correlatives with bhii (in modal sentences):

- (88) jo bhii kitaab vo paRh rahaa hai, vo kitaab tum-ko bhii paRhna cahiyee which even book he is-reading, that book you even should read
- (89) Whichever book he is reading you should (#it) read too.

This pattern is related to the felicitous occurrences of *any* in singular definite descriptions in generic sentences (discussed in an earlier class), which we return to in the next lecture (and show how the theory developed above predicts acceptability and context-dependence) ...

(90) The mayor with any sense chooses the school superintendent.

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

24.979 Topics in Semantics: Negative Polarity Items Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.