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Lecture 30

Phase Diagrams

Last Time

Common Tangent Construction

Construction of Phase Diagrams from Gibbs Free Energy Curves

If the temperature in Figure 28-5 is decreased a little further:
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 Tm (pure A) < T2 < T1
          P =constant
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Figure 30-1: Figure 28-5 drawn at an even lower temperature than Figure 28-3.
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Figure 30-2: Plot of the equilibrium compositions as the temperature is decreased.

Lowering it to the melting point of pure A
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 T = Tm (pure A) 
    P =constant
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Figure 30-3: Figure 28-5 at the melting point of pure A.
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Figure 30-4: A binary alloy phase diagram—derived from Figures 28-4 through 30-3.

A Menagerie of Binary Phase Diagrams

The phase diagram in Figure 30-4 is the simplest possible two-component phase diagram
at constant pressure.
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Figure 30-5: The so-called ”lens” phase diagram. The upper line is the limit of fsolid →
1 and is called called the solidus curve. The lower line is called the liquidus curve.

Figure 30-6: A variation on the lens phase diagram.

Consider how the Gibbs phase rule relates to the above phase diagrams.
The Gibbs phase rule is: D = C + 2− f
However, P is constant so we lose one degree of freedom: D = C + 1− f
In the two phase region—D = 2 + 1− 2 = 1—so there is one degree of freedom.
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Question: What is the degree of freedom? What does it mean?

• If temperature is changed at fixed 〈X◦〉, then the change in volume fraction of phases is

determined. In other words there is a relation between dT and dfsolid.

• If 〈X◦〉 is changed with fixed phase fractions then ∆T is determined by the change.

Consider another two-component phase diagram and see if it violates the Gibbs phase rule.

Figure 30-7: Is this a possible phase diagram?

Consider the three-phase region: D = C + 1− f = 0
Because there are no degrees of freedom, the three-phase region must shrink to a point in

a two component system. This places restrictions on the topology of binary phase diagrams.
The diagrams below illustrate how such an invariant point (i.e., three phase equilibria in a

two component system) arises:
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Figure 30-8: Liquid is stable at all compositions at this temperature.
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Figure 30-9: One of the solid phases becomes stable.
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Figure 30-10: The second solid phase becomes stable as well, but not at the same
compositions as the first.
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Figure 30-11: At one unique temperature (the Eutectic) the two phase regions converge–
this is the invariant point.
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Figure 30-12: Below the eutectic, the two solid phases are separated by a two-phase
region.

This yields the following phase diagram

Figure 30-13: The free curves from Figures 30-8 through 30-12, result in a eutectic
phase diagram.
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Classifying the Invariant Points: Drawing Phase Diagrams
There are two fundamental ways that invariant points can arise:29

1. When two two-phase regions join at a temperature and become one two-phase region:

Eutectic (α + liquid) + (liquid + β) ⇀↽ (α + β)

Eutectoid (α + γ) + (γ + β) ⇀↽ (α + β)

Figure 30-14: Eutectic-type (EV-TYPE at MASSACHVSETTS INSTITVTE OF
TECHNOLOGY) invariant points.

2. When one two-phase region splits into two two-phase regions:

Peritectic (α + liquid) ⇀↽ (liquid + β) + (α + β)

Peritectoid (α + γ) ⇀↽ (γ + β) + (α + β)

29There is a third type of invariant point that we will learn about later.
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Figure 30-15: Peritic-type invariant points.

The invariant points determine the topology of the phase diagram:
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Figure 30-16: Construct the rest of the Eutectic-type phase diagram by connecting the
lines to the appropriate melting points.
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Figure 30-17: Construct the rest of Peritectic-type phase diagram, on the left a rule for
all phase diagrams is illustrated—the “lines” must metastably “stick” into the opposite
two phase region.

These diagrams can be combined and drawn:
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Figure 30-18: Construct the lens over peritectoid phase diagram.
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Figure 30-19: Construct the peritectic over eutectic phase diagram.

In all cases, you should be able to predict how the phase fractions and equilibrium compo-
sitions change as you reduce the temperature at equilibrium.
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