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Last time

e Introduction of the second law:

Mechanical equilibrium

¢ The power of the second law is that it can be used to determine equilibrium conditions for any
thermodynamic system, under arbitrary constraints — systems that can exchange heat, exchange
molecules, exchange electric charge, etc.- in response to arbitrary thermodynamic driving forces:
temperature, pressure, chemical potential, etc.

¢ Let's show a second example: how the second law also defines the conditions for mechanical equilibrium:

o Consider two different ideal gases A and B enclosed in a cylinder, partitioned by a movable
(frictionless) piston as illustrated in the figure below. The volume of the cylinder cannot change
(Va + Vg = constant) but the partition can slide left or right- compressing one gas (placing it under
higher pressure) while expanding the other (reducing the pressure). The gases cannot exchange
heat or work with their surroundings. What will the pressure on the two gases be at equilibrium?

After Equilibration
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o Applying the fundamental equalion for the entropy of the two gases:

= Since T, = Tg, this means that at equilibrium P, = Pz. Mechanical equilibrium is
reached when the pressures on the two gases are equal.
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The internal energy at equilibrium

¢ The principle of maximizing entropy at equilibrium can be shown to be equivalent to minimizing the
internal energy with the entropy of the system held constant. Graphically:

) —

The plane
=8,

The equilibrium state A as a point of minimum U for constant S.

Figure by MIT OCW.

¢ Minimization of internal energy at constant total entropy is a mathematical consequence of the
relationship between internal energy and entropy. We won’t go through the proof here, but you can read
through a short proof of it in the supplementary reading from Callen.

20
o Because the absolute temperature T is always positive, and [—J =7, the variational
V.N

statement of the second law translates to a variational statement for the internal energy at
equilibrium:

o The internal energy reaches a minimum at equilibrium.
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Two new thermodynamic functions useful for laboratory conditions

Why we need another thermodynamic function

In the calculations of equilibrium temperature and pressure we made using the second law in the last
lecture, we considered isolated systems where transfer of heat, work, or molecules at the boundaries of
the system were not allowed. (In our block A/block B heat transfer experiment, the blocks did no work and
were not allowed to exchange heat with their surroundings- only with one another). In such constant
internal energy systems, it is straightforward to directly apply the fundamental equation for the entropy
and the second law to calculate equilibrium properties of the system.

Though the experiments described in those calculations are physically possible, controlling heat and work
flow at the boundaries of a real system is often not a simple task- and is unnecessary for most
experimental procedures you would be interested in performing. Instead, what we would like to control at
the boundaries of our system are the temperature and pressure (imagine a solution of a material in a test
tube, as illustrated below). This is experimentally straightforward- we can place our test tube in a heating
or cooling bath to maintain a constant temperature, and if the system is open to the atmosphere, it is
maintained at a constant pressure (1 atm). Alternatively, if we seal the test tube with an inflexible barrier,
the contents of the tube may be held at constant temperature and (approximately) volume.

— 5
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Figure by MIT OCW.
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o Thus, instead of keeping the internal energy of the system constant, we would like to keep the
temperature and pressure or temperature and volume constant, and predict how the system
changes when various thermodynamic driving forces are applied (for our test tube example,

perhaps we want to carry out a reaction on the material in the solution). We have two new
complications here:

= |f we have ourtest tube in a heating bath, internal energy in the form of heat is being
transferred into and out of the system to maintain a constant temperature, and we can no

longer apply the fundamental equation for the entropy to the system alone to determine
the equilibriuim state.

« The second law only dictates the behavior of the total entropy of the universe. Ack!

Isolated system closed system

system /
A B
surroundings surroundings
ASuni\.rerse . ASsysten-n ASuni\.rers.e = Assystem"' ASs.urrnundings
?2??

o So how do we get around this problem? We'd much rather make calculations for the system
alone, rather than having to understand the thermodynamic behavior of the system and its
surroundings. The solution is to define a fundamental equation designed for the conditions at hand.

o Mathematically, it is most straightforward to make equilibrium calculations using a

thermodynamic function whose independent variables are the variables controlled at the
boundaries of the system.
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Equilibrium at constant temperature and pressure: Gibbs Free Energy®

Determining equilibrium for experiments in the lab

e The second law defines equilibrium by the change in entropy of the entire universe. As already
discussed, that's an incredible pain when we are only really interested in what’s happening in our test
tube! The solution: let’s define a new state function that will allow us to apply the second law by looking

only at the changes occurring in the system. We start by imagining the real system + surroundings
enclosed in an isolating box:

System + reservoir
is isolated
+« The second law defines possible processes by:
AS piverse = DS gstom + AS curroundiings 2 0 for all possible processes

¢ We make use of the isolated nature of the system + surroundings to write constraint equations:
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« Now, from the fundamental equation for the entropy, we have:

s These last two equations are, for practical calculations, perhaps the most important in thermodynamics
for materials science and engineering.

o In words, the second law demands that the Gibbs free energy must be lowered by the
change happening to a system for that change to happen spontaneously at constant
temperature and pressure. It also dictates that the Gibbs free energy at constant
temperature and pressure is a minimum at equilibrium.
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What's ‘free’ in the Gibbs free energy?

¢+ We defined a useful thermodynamic function (the enthalpy, H) by simply subtracting the ‘mechanical’
component of the internal energy from U. In a similar manner, Gibbs free energy (G) is defined by
subltracting both the ‘thermal’ energy and the ‘compressive’ energy from U:

* But what is the Gibbs free energy? We've taken the tolal internal energy and subtracted off the thermal
energy and the compressive energy- what's left? The answer: energy arising from other kinds of work
terms. So far we've moslly focused on two sources of internal energy. compressive work from an applied
pressure and thermal energy due to heat transfer. However, we also introduced other types of work:
work of polarization. chemical work, magnetic work, etc.

o In many practical problems in malterials science & engineering, it is these other kinds of work in
which we are most interested...

¢ The differential form of the Gibbs free energy (the fundamental equation for the free energy) is useful
for many calculations in multicomponent/multiphase systems:
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Equilibrium at constant temperature and volume: Helmholtz Free Energyr1

¢ A second common ‘real-world’ situation is the case of a system equilibrated at constant temperature and
held at constant volume. Though this is often difficult to realize experimentally, it is especially important
for many theoretical calculations, and particularly computer simulations, where constant volumes are easy
to model. (We will make extensive use of this situation in statistical mechanics later in the term). Again,
to facilitate predictions of spontaneous processes under conditions of constant temperature and constant
volume, we'd like a thermodynamic function for the system that satisfies the second law by being

maximized or minimized at equilibrium.

+ Imagine for concreteness that we have a test tube in a heat bath as depicted in the left-hand figure
above. The bath and test tube are isolated from their surroundings and do not exchange heat, work, or
atoms with the atmosphere/benchtop/etc. The test tube is the system of interest, but because the tube is
exchanging heat with the bath, we must also consider the entropy of the heat bath (the surroundings).
Together, the heat bath + test tube do form an isolated system, so the fundamental equation for the
entropy can be used to apply the second law to the pair (nothing else in the universe is being affected by
the test tube and bath);

System + reservoir

is isolated
AS verse = B gy + AS g iom 2 0 second law for the tube + heat bath
du..
(jSmW o dUm;‘, + 2 dl’;”w = svsten
I T T Ts_\‘srem
au._ ..
ds universe i dS.rL'srem =0
rs;ﬂsfem -
du
ﬂ - dS.wsfem S 0 :> dt}m‘srem - TdS.wsfem ﬂ 0
?:j‘m’m - . 7
Lecture 9 - free energy 11 of 15

10/7/05



3.012 Fundamentals of Materials Science Fall 2005

o These equations give us a thermodynamic function that is minimized to satisfy the second law for
a system held at constant temperature and pressure. With this equation we do not need to
know the state of the heat bath- we only need lo know the state of the system itself.

e The differential above is defined as a new thermodynamic function: The Helmhollz free energy:

e As an aside, the derivation of the Helmholtz and Gibbs free energies is an example of a change of
variables- changing from maximizing entropy of a system at constant (U, V,N) to minimizing free energy of

a system at constant (T, V, N). There are mulliple ways to arrive at this change of variables, known as a
Legendre transformation.
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Mathematical Theorems to Extend our Calculations

The Euler Relationship and Maxwell Relations

¢ We've already discussed some of the useful properties of state functions like U, S, and H- they are path
independent and integrable. An additional useful characterislic is that state functions must obey the Euler
reciprocal relationship, which is expressed mathemalically for a multivariable function f(x,y) as:

Ean) Ffy) _ A fxy) CULER

2 98% Fudx

RELATIONSHIP

o The Euler relationship can be used to identify identities between thermodynamic variables that
are not obvious; these are called the Maxwell relations.

+ A set of Maxwell relations can be derived for each thermodynamic slate function. For example, starting
with the internal energy U(S, V,N):

=  Maxwell’s relations can help us further derive thermodynamic quantilies from measurable
parameters of our materials.

e Another example is the Maxwell relation obtained by taking second derivatives of the enthalpy H{S,P,N):

¢ We have two more key thermodynamic functions we will use this term, which also have Maxwell relations:

o Gibbs free energy:

= G=H-T§
Ay 2
= Maxwell relation: —(éJ = [(—J
\a/), \arJ,
o Helmholiz free energy:
. c=U-18
Lecture 9 - free energy 13 of 15

10/7/05



3.012 Fundamentals of Materials Science Fall 2005
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