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Last time 

A simple model: the Einstein solid 

•� Our introduction to the connection of thermodynamic quantities to microscopic behavior begins by 
considering a simple model of a monoatomic crystalline solid- models of materials are the starting 
point for statistical mechanics calculations. 

•� Suppose for definiteness we have a crystalline solid: As a model for how this material behaves in 
response to temperature, we propose that the most important degree of freedom available to the atoms to 
respond to thermal energy is vibration of the atoms about their at-rest positions. 

o� The bonding between atoms creates a potential energy well in which the atoms are centered at 
their at rest position. Oscillations of the atoms about the at rest position can be induced by 
thermal energy in the material. The potential is called a harmonic potential because of its shape-
similar to the potential of a spring in classical mechanics. Because the oscillation of the atoms is 
constrained by bonding to center about their at-rest positions in the crystal lattice, the energy of 
vibration for each atom is quantized: 

Model for a 3-atom solid as 1D harmonic oscillators 
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Figure by MIT OCW. 

2 •� …where h is Planck’s constant (h = 6.62x10-27 gm cm sec-2) and ν is the frequency of the atomic 
vibrations. The total energy of the solid is the sum of the individual energies of each oscillator: 
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Microstates in Isolated Systems 

o� The total number of allowed microstates is a parameter we will refer to again and again; we give it 
the symbol Ω. For the system above, Ω = 6. The collection of all Ω microstates for a given 
system is called its ensemble. (For the case of a system with fixed (E,V,N) it is referred to as the 
microcanonical ensemble). 

Distinguishable vs. indistinguishable atoms/particles 

•� Two cases arise in modeling real systems: one where we can identify each atom uniquely, and the case 
of atoms being identical and indistinguishable. 

•� If we had indistinguishable atoms, then we would only be able to observe the unique microstates, whose 
number is given the symbol W: 
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o� We have collected the individual microstates now into 2 groups characterized by the number of 
atoms in each energy level (n0, n1, and n2). We will call the set of microstates that has a given set 
of occupation numbers a state (as opposed to microstate). The total number of distinguishable 
states is W. 

•� For our overly-simplified 3-atom model with a low total energy of Etotal = (7/2)ε, the number of distinct 
arrangements is small. However, for a material containing a mole of atoms at room temperature, the 
number of possible ways to occupy the available energy levels is enormous. Thus, rather than writing 
diagrams of all the possible microstates, we become concerned with the probability of finding a certain set 
of microstates j in the ensemble that have a given distribution of the atoms among the energy levels. 

The first postulate of statistical mechanics 

•� The first postulate of statistical mechanics tells us the frequency of each of the possible states or�
microstates occurring in the ensemble:�

� This postulate is often called the principle of equal a priori probabilities. It says that if the 
microstates have the same energy, volume, and number of particles, then they occur with 
equal frequency in the ensemble. 

o This postulate tells us what the pj’s for the two states in our 3-atom Etotal=7/2ε system are: 
� We have a total of W = 2 states, (3 microstates in each of the two unique states j=1, j=2). 

Thus the probability for each state is: 

 Each state has a frequency of 50% in the ensemble. 
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The second fundamental postulate of statistical mechanics7 

The second postulate connects ensemble averages to measured thermodynamic quantities 

•� Statistical mechanics makes one postulate that connects the energy-level model of a material to its 
macroscopic thermodynamic properties: 

•� What it means: 
o� The postulate tells us that we can calculate the thermodynamic properties of a material if we have 

a model that provides us with a way to describe the possible microstates of the system. As we 
make a measurement on the real system, we might imagine the atoms in the system 
undergoing thermal fluctuations that allow the system to rapidly fluctuate between the 
many microstates of our model, making the time average measurement on the real system 
equivalent to averaging the property in our ensemble of microstates in the model. 

o� Note that though we drew a ‘mini-ensemble’ for our 3-atom imaginary solid above, the postulate 
rigorously holds only when the number of microstates possible is very large. Fortunately, this will 
always be the case in models of real materials containing NAv numbers of atoms! 

Taking averages in the ensemble: 

o� To take an average over the microstates of the ensemble, we assume we have determined the 
probabilities of each microstate pj. Then the average of some quantity X is given by: 

o� Where Xj is the value of the property X in microstate j. The second postulate further states that 
the average property over the ensemble is equivalent to the measurable thermodynamic quantity 
in a real system. Thus, for example, if we want to calculate the thermodynamic pressure: 

The second postulate applied to a fixed (E, V, N) system 

•� We now have what we need to make thermodynamic calculations for our collection of harmonic oscillator 
atoms at fixed total energy. Suppose we fix the total energy of the 3-atom (N = 3) harmonic oscillator 
solid to a value E = (7/2)ε. Applying the postulates to the 3-atom harmonic oscillator solid, we can predict 
the thermodynamic energy: 
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o� The allowed microstates are sketched in the ensemble above. We have a total of Ω = 6 allowed 
microstates that fit the constraints. First, applying the first postulate, we know the probability of 
each of the allowed states is p1 = p2 = 1/2. 

o� Applying the second postulate, the thermodynamic internal energy is: 

•� This result is trivial since we fixed the total energy Etotal = (7/2)ε, but it gets interesting when we consider 
the more practical situation of a system held at fixed temperature instead of fixed energy. We’ll tackle this 
next, after we introduce the microscopic definition of entropy. 

KEY CONCEPT: Two postulates that form the basis of statistical mechanics 

1.� When U, V, and N are fixed, each allowed microstate is equally probable. 
2.� The ensemble average of a thermodynamic property is equivalent to the time-averaged macroscopic 

value of the property measured for the real system. 
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The microscopic definition of entropy 

•� We have now seen that we can use an ensemble, a collection of all possible microstates accessible to 
the molecules/atoms of a material, to determine thermodynamic properties of a system. Because the 
number of microstates is related to the number of degrees of freedom in the material (e.g., how many 
energy levels can be accessed), we might expect the number of microstates, Ω, to be related to entropy-
and in fact, it is directly related to entropy. 

•� Ludwig Boltzmann sought to connect entropy to the quantum mechanical picture of molecules, and found 
an answer in the following simple expression that connects the entropy to the probabilities of each state: 

o� This is equivalent to the famous expression: 

o� Here S is the entropy of the system, kb is Boltzmann’s constant ( kb = R/NAv the ideal gas 
constant/Avogadro’s number) and Ω is the number of microstates available to the system. 
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� We can show the equivalence of (Eqn 5) and (Eqn 6) easily for the case of the 
microcanonical ensemble (a system with fixed (E,V,N)): The probabilities pj = 1/W in the 
microcanonical ensemble, therefore: 

•� That (Eqn 6) is the correct expression for the entropy in statistical mechanics can be shown rigorously, 
but we will forgo this more involved derivation here for the sake of time (you can see one derivation, for 
example, in Chapter 1 of Hill1.) 

Testing the microscopic definition of entropy 

•� This simple definition is full of physical meaning for the nature of entropy. Let’s compare the behavior of k 
ln Ω with the required behavior of the classical thermodynamic quantity S. 

Entropy is an extensive quantity 

� The statistical mechanical definition of entropy is extensive, just like S. To see this, consider how 
many states are available to a material formed by combining material A having ΩA different 
microscopic states with material B having ΩB microscopic states: 
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Entropy increases with increasing energy 

•� Entropy increases with E 
o� Like the thermodynamic function entropy, kln � and kln Ω increase with increasing energy in a 

model system. Consider our 3-atom solid once again: 

Etotal/ε Ω 

Energy 

Figure by MIT OCW. 

ntotal, Etotal

!

ntotal, Etotal

S = kbln !

• The derivative is always positive like T 
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The first postulate satisfies the second law 

•� Just as the second law dictates the equilibrium macrostate in classical thermodynamics, the second law 
dictates what microstates the system will reside in at equilibrium: 
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The Boltzmann factor and Partition function 

•� Last time, we began the process of determining the probabilities of microstate occupation for the 
experimentally interesting case of fixed temperature/volume systems: The ensemble for fixed (T, V, and 
N) includes all possible microstates for the solid that have the same temperature; it is called the 
canonical ensemble (‘canonical’ because it is used so often to model real systems). 

•� Recall that for systems with constant (T,V,N), the second law is satisfied when the Helmholtz free 
energy (F = U - TS) is a minimum. 

o� To determine the equilibrium probability pj for each individual state j, we simply calculate what 
values of pj (for each possible state j) minimize the Helmholtz free energy F, subject to the 
constraint that the pj’s act like a probability and sum to 1: 

•� We want to calculate the minimum in F with respect to pj for all possible states j: 

•� To satisfy the constraint that the pj sum to 1, we use the method of Lagrange multipliers. We minimize F 
with the constraint included: 

•� We can fill in U and S in terms of the probabilities of each state: 
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