Lecture 2: 09.12.05 Fundamental concepts continued

Today:

LAST TIME	2
THERMODYNAMIC VARIABLES, SYSTEMS, AND FUNCTIONS	
Thermodynamic Variables	3
The constituents of materials: components and phases	4
Thermodynamic systems	8
IDENTIFICATION OF PROCESSES	
Types of processes	10
REVERSIBLE AND IRREVERSIBLE PROCESSES	11
Reversible Processes	
Irreversible processes	12
References	

Reading:

Engel and Reid: 1.4, 2.1, 2.2, 2.3

Last Time

Thermodynamic variables, systems, and functions

Thermodynamic Variables

- Remember that classical thermodynamics is concerned with macroscopic properties
- 2 types of variables o
 intensive

o□ Extensive

- e.g. pressure and volume P <-> V
- the product of one intensive variables multiplied by its coupled extensive variables is work

The constituents of materials: components and phases

Components

• The **components** are the irreducible molecules, compounds, or atoms that make up a system:

Example system	Class of material	Components	Class of components	

phases

Phase:

 $\circ\square$ examples:

Stable phases of Fe¹

Form of matter	Phase	Identification symbol of phase					
Gas	Gas	Gas					
Liquid	Liquid	Liquid					
Solid	Body-centered cubic	δ					
Solid	Face-centered cubic	γ					
Solid	Body-centered cubic	α					
	Form of matter Gas Liquid Solid Solid Solid	Form of matterPhaseGasGasLiquidLiquidSolidBody-centered cubicSolidFace-centered cubicSolidBody-centered cubicSolidBody-centered cubic					

- Phases may have multiple components, and different phases may have the same components (though in different relative amounts). Phases, particularly solid phases, are often identified using Greek letters (as seen above for Fe- the solid phases are denoted δ, γ, and α).
- A multiphase system is one where the components of the system exist in multiple unique forms (structure or composition) within the system.
- Phases can have dimensions from macroscopic down to a few molecules:

Figure removed for copyright reasons.

See Fig. 6.18(a) on p. 370 of Allen, S., and E. L. Thomas. The Structure of Materials. New York, NY: Wiley, 1999.

Figure removed for copyright reasons.

See Fig. 2 in Bockstaller et al. "Size-selective Organization of Enthalpic Compatibilized Nanocrystals in Ternary Block Copolymer/Particle Mixtures." *J. Amer. Chem. Soc.* 125 (2003): 5276-5277. Figure removed for copyright reasons.

See p. 198 in Mann, S. *Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry*. New York, NY: Oxford University Press, 2001.

• A few other useful definitions:

o□ Mixture:

o□ Solution:

Thermodynamic systems

• Thermodynamic systems can have boundary conditions that limit the exchange of energy or atoms/molecules with their surroundings. Some of the types of systems one may be interested in for materials science and engineering problems include:

System	Boundary condition:					
Isolated						
Closed						
Adiabatic						
Open						

• In closed multi-phase systems, molecules and energy *can* be exchanged *among phases within the system*:

Identification of processes

Types of processes

- We've stated that thermodynamics is a theory for predicting what changes will happen to a material/system. A key part of making correct predictions is identifying what processes can happen within the system.
 - Several common processes include:

Process type	Conditions	
Adiabatic		
Isochoric		
Isothermal		
Isobaric		

Examples of classifying a system and process:

1. You place a thin metal film (your system) in an oven to anneal (equilibrate at elevated temperature).

Type of System:

Process:

2. Your system is a cold glass of water, and you place it on your porch on a sunny day.

Type of System:

Process:

Reversible and Irreversible Processes

Reversible Processes

• Reversible processes are idealized processes that:

occur "forward" or "backward" with no change in the surroundings

• Examples:

Irreversible processes

• Natural processes typically occur in only 1 direction spontaneously

 $\circ\Box$ These are *irreversible* processes

Experiment		Process	Observation of irreversibility
Add a drop of food coloring to a glass of water	•		
Expansion of a gas into a vacuum	•		
Cooling of a hot object placed in a cold room	•		
Melting of a solid at T = Tm + 100°	•		

Thus irreversible processes are driven in the one allowed direction by the second law

References

1.	Reed-Hill, R. E.	. & Abbaschian, R.	Physical Metallurgy	Principles (PWS P	ublishing, Boston,	1994) 926 pp,
----	------------------	--------------------	---------------------	-------------------	--------------------	---------------

- 2. Allen, S. & Thomas, E. L. The Structure of Materials pp,
- 3. Mann, S. *Biomineralization: Principles and concepts in Bioinorganic Materials Chemistry* (Oxford University Press, New York, 2001) 198 pp,
- 4. Carter, W. C. 3.00 Thermodynamics of Materials Lecture Notes <u>http://pruffle.mit.edu/3.00/</u> (2002).