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Last time 

The Boltzmann Factor and Partition Function: systems at constant temperature 

	 How do we treat systems at constant temperature in statistical mechanics? We needed to determine how 
the probability of model microstates depends on temperature. We found the answer by minimizing the 
Helmholtz free energy with respect to the possible microstate probabilities pj. This analysis gave us the 
Boltzmann factor and the partition function: 

	 Once we had the concept of the partition function, we began tackling a first example problem: the Einstein 
solid. Atoms of a crystalline solid are assumed to vibrate in x, y, and z with a single well-defined 
frequency as quantum mechanical harmonic oscillators. We started by solving for the molecular partition 
function: 

	 From here we determined the partition function for a system of N non-interacting, identical, 
distinguishable oscillators: 
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 The partition function for this simple model allowed calculations of the internal energy and heat capacity 
of a crystalline solid: 
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Figure by MIT OCW. 

A better model: The Debye solid 

	 The Einstein model makes the simplification of assuming the atoms of the solid vibrate at a single, unique 
frequency: 
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Frequency distribution g(v) for crystal. (a) Einstein approximation. (b) Debye approximation. 
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Figure by MIT OCW. 
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Figure by MIT OCW. 

	 ‘g’ in Figure 5-4 above from Hill is the distribution of vibrational frequencies present in the crystal. In the 
Einstein model, only one vibrational frequency is assumed for all atoms in the crystal. However, atoms 
sitting on different lattice sites may have difference accessible vibrational frequencies- which depend on 
what neighbors they ‘feel’ around them- this is seen in the complex distribution of vibrational frequencies 
shown in Figure 22.8 from Mortimer for a real sample of copper. The Debye model approximates the true 
frequency distribution by assuming the distribution shown in Figure 5-4(b): a distribution that is continuous 
up to some frequency cut-off (νm). The Debye expression for heat capacity becomes: 
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EINSTEIN MODEL DEBYE MODEL 
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 This approximation leads to a heat capacity behavior near zero Kelvin which better captures 
experimentally-observed behavior: 
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 The Debye model performs quite well for predicting the thermal behavior of many solid materials: 
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Figure by MIT OCW. 
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Examination of heat capacities of different materials 

•	 If heat capacities correlate with molecular degrees of freedom in a material, we might expect materials 
that have similar degrees of freedom to have similar heat capacities. This is in fact seen for many 
materials. Consider first a comparison of the heat capacity in 3 different crystalline non-metals:2 
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(Ge crystal structure from www.webelements.com)	

o	 Thus in these structurally-related crystals, the heat capacity per NAv atoms is very similar, ~3R, or 
25 J/mole K. We will show later in the term that this plateau value can be predicted by treating 
the atoms in the solid as a collection of harmonic oscillators. 
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Degrees of freedom in molecular models(1) 

Excitations in materials 

•	 We modeled the atomic vibrations in a crystalline solid using 3 degrees of freedom- harmonic oscillations 
in X, Y, and Z. We saw that a model using only these 3 degrees of freedom provides reasonable 
predictions for the behavior of the heat capacity of many solids. Other materials may have other 
important degrees of freedom that we should account for to obtain good statistical mechanics predictions 
of their behavior. The important molecular degrees of freedom include: 

1.	 Translation 
2.	 Rotation 
3.	 Vibration 
4.	 Electron excitation 

Translation 

•	 Molecules that have freedom to move within their confining volume 
(e.g. container) have translational degrees of freedom. For

example, the molecules of a gas can occupy positions throughout

the volume in which they are enclosed via diffusion.


Rotation 

•	 Molecules can often store energy in rotations about bonds between atoms: 
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Vibration 

•	 The electronic glue holding molecules together allows vibrations that store energy: 

Electronic excitations	 Figure by MIT OCW. 
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Figure by MIT OCW. 

Complete molecular partition functions 

•	 A complex system may have all of these degrees of freedom. To make calculations for a given model, 
we need to know how to put these degrees of freedom together in the partition function. 

Independent degrees of freedom 

	 A common approximation is to assume that each degree of freedom in the molecules of the system is 
independent, with a unique amount of energy for each possible state of that degree of freedom (let’s use 
DOF as an abbreviation for degree of freedom). Thus a molecule with both vibrational and electronic 
DOFs has states characterized by one total energy containing independent contributions from the 
vibration and electronic excitations: 
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o	 The subscript j refers to the single state that has the given characteristic vibrational and electronic 
energy. Because we assume they are independent, the value of Ej

vib does not depend on the 
value of Ej

elec, and vice versa. The partition function of this system with independent DOFs is: 

	 Where the independent energies have been split off into partition functions for each DOF, 
qvib and qelec. 

o	 In general, a complete molecular partition function made up of independent degrees of freedom 
can be written as the product of the individual DOF partition functions: 
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Lattice models for translational degrees of freedom 

•	 We introduced statistical mechanics as a set of tools for calculating macroscopic thermodynamic 
quantities from molecular models. These models can be derived either from quantum mechanics (e.g. 
the Einstein solid) or from simpler non-quantum models. There are many cases when the quantum 
nature of available energies in the system of interest do not dominate and we can use so-called ‘coarse-
grained’ lattice models to capture the important aspects of the material’s behavior. 

o	 Earlier, we have seen that chemical potential models such as the regular solution or ideal solution 
mimic some real experimental data reasonably well. However, a question unanswered is- where 
did this model come from? What about the regular solution model- how do molecular interactions 
give rise to miscibility gaps? Answers to these questions can be found in simple lattice models. 

Assumptions in simple lattice models 

	 ASSUME: 

Figure by MIT OCW. 
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	 In this simple lattice model, we assume that only translational degrees of freedom matter in the 
determination of possible statistical mechanical states- the states of the system are simply defined by the 
number of unique ways the molecules can be arranged on the lattice. We take N for the total number of 
molecules (N = NA + NB). To determine the entropy of mixing, we need the number of distinguishable 
states W for the mixed and unmixed components. For the unmixed pure components, there is only one 
distinguishable state (all lattice sites occupied by either A or B), so the entropy is 0 (S = k ln 1 = 0). 

	 These assumptions can be used to derive both the ideal solution model of 
the chemical potential and the regular solution chemical potential. 

	 As an example of the utility of lattice models for materials, we will now derive 
the entropy and enthalpy of mixing using a simple lattice model for polymer 
solutions, based on the Flory-Huggins theory of polymer solutions. 

o	 Paul J. Flory’s extensive work on the statistical thermodynamics of 
polymers was awarded the nobel prize in chemistry in 1974 

Image removed for copyright reasons. 
Photograph of P. J. Flory. 
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Flory-Huggins Theory of Polymer Solutions 
 

• Flory-Huggins theory was developed to provide a molecular theoretical basis for the free energy behavior 
of polymer solutions- to allow predictions of miscibility behavior based on polymer molecular structure.  
Thus, our objective is to derive a theoretical description of the free energy of mixing, which can be used to 
predict phase diagrams of polymer solutions: 
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The entropy of polymer solutions 
 

 To model a polymer solution- a collection of high molecular weight polymer chains mixed with a small-
molecule solvent, we model the polymer chains as beads connected by unbreakable bonds on a cubic 
lattice.  Solvent molecules fill single sites of the 3D lattice: 
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 In this lattice model, we are concerned with one degree of freedom in the calculation of the entropy- the 
translational entropy: 

! 

"S
mix = Ssolution # Sunmixed = Ssolution # S

pure polymer + Spure solvent( )

	 We are thus looking to derive expressions for Wsolution and Wpure polymer- the number of configurations 
possible for the polymer + solvent or the polymer alone on a 3D lattice. 

CONFIGURATIONS OF A SINGLE CHAIN 

	 We start by looking at the number of ways to place a single polymer chain on the lattice: 

o	 What are the number of conformations for first bead? 

o With the first bead placed on the lattice, what is the number of possible locations for the second 
segment of the chain? 
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o Moving on to placement of the third segment of the chain: 

o	 We repeat this process to place all N segments of the chain on the lattice, and arrive at ν1, the 
total number of configurations for a single chain: 

COUNTING CONFIGURATIONS FOR A COLLECTION OF CHAINS 

o	 We can follow the same procedure shown above for a single chain to obtain the number of 
configurations possible for an entire set of np chains. We start by placing the FIRST SEGMENT 
OF ALL np CHAINS. The number of configurations for the first segment of all np chains is 
ν first: 

o	 The number of configurations for the (N - 1) remaining segments of all np chains is ν subsequent: 
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o Putting these two configuration counts together, we have the total number of configurations for 

the collection of np chains of N segments each: 
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 The factor of np! Corrects for the 

over-counting since the polymer 
chains are indistinguishable, and we 
can’t tell the difference between two 
configurations with the same 
polymer distributions but different 
chain identities: 

 
 
 
 

 
 

 We are now ready to calculate the number of unique states for the unmixed and mixed states: 
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o MIXED STATE: 
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o Applying Stirling’s approximation: 

! 

ln x!" x ln x # x

o …arriving at a final result: 
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! 

"#Smix = $kb ns ln%s + np ln%p[ ]
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