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Objectives 
Discover principles of X-ray diffraction from crystalline materials�

Collect X-ray powder diffraction patterns and analyze using Powder Diffraction File (PDF)�
Explore relationship between relative ion sizes and crystal structure symmetries�

Tasks 
Calculate structure factors of materials investigated 

Prepare samples for X-ray powder diffraction 
Obtain X-ray powder diffraction patterns for six perovskite-structure oxides 

Compare patterns obtained to calculations and PDF 
Apply peak fitting routines to determine lattice parameters 

Relate composition, lattice parameter, ionic radius, radius ratio, and crystal symmetry 

Materials 

CaTiO3, BaTiO3, SrTiO3, PbTiO3, CaZrO3, PbZrO3 

Introduction 

Many inorganic materials, such as halides like NaCl and oxides like MgO, TiO2 

or Al2O3, exhibit strong ionic character in their atomic bonding.  As a result, atom 
packing in these systems is dictated by electrostatic forces—the structures chosen by 

nature are those that maximize interactions between ions of opposite charge while 

minimizing contact between like-charged ions and maintaining electrical neutrality. 
Structural consideration of ionic solids begins with the Goldschmidt1 ionic model, which 

assumes that ions are essentially charged, incompressible, non-polarizable spheres with a 
definable radius. As a consequence of electrostatic interactions, ionic crystals create 

ordered arrangements of coordination polyhedra, in which cations are in contact with a 

maximum number of surrounding anions, the number depending on the ratio of the cation 
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radius to the anion radius, rC/rA (Table 1), and to a lesser extent cation charge.  A large 

highly charged cation (such as Ba2+ or U4+) can accommodate a larger number of anions 
around it. U4+ cations in UO2 are 8-coordinated by O2– anions in the fluorite structure 

O

Fig. 1. (8:4) Fluorite structure of UO2, with rC/rA ratio = 0.724.  The U4+ cations 
form a cubic face-centered arrangement, but alternatively can be thought 
of as filling every other cube interstice in the simple cubic arrangement of 

2– anions, or as [UO8] coordination cubes linked by sharing edges.  In 
the (4:8) anti-fluorite structure of Na2O, the roles of anion and cation are 
reversed, with rA/rC = 1.39, Na2+ cations coordinated by four O2– anions, 
and [ONa8] anion coordination cubes sharing edges. 

(Fig. 1), while Ba2+ cations in perovskite-structure BaTiO3 (Fig. 4, see below) are 12-
coordinated by O2– anions). Conversely, smaller and less-highly charged cations cannot 

accommodate so many anions around them (Li2O and Na2O adopt the anti-fluorite 

structure (Fig. 1) in which the Li1+ and Na1+ cations are only 4-coordinated by oxygen). 

Table 1. Preferred Cation Coordination in Ionic Crystals 

Cation Coordination No. Anion arrangement Minimum stable rC/rA 

12 corners of trunc. cube 1.000 

8 corners of cube 0.732 

6 corners of octahedron 0.414 

4 corners of tetrahedron 0.225 

3 corners of triangle 0.155 

2 collinear 0 
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Of course, the anion point of view may equally be adopted.  In the Na2O example just 

cited, eight (smaller) Na1+ cations surround each (larger) O2– anion. In some cases (like 
BaO), the cation could accommodate a larger number of anions around it (e.g. 8 or 12) 

than the 6 it has, but the anion cannot accommodate around itself the geometrically 
consequential number of cations dictated by stoichiometry. 

Table 2. Coordination-Dependent Ionic Radii (Shannon & Prewitt3) 

Ion 
Radius r (pm) 

CN = 12 
Radius r (pm) 

CN = 8 
Radius r (pm) 

CN = 6 
Radius r (pm) 

CN = 4 
Li1+ 76 59 

Na1+ 118 102 99 

K1+ 185 138 

Rb1+ 161 152 

Cs1+ 177 167 

F1- 135 133 

Cl1- 184 181 

Mg2+ 72 

Ca2+ 134 112 100 

Sr2+ 144 126 118 

Pb2+ 149 129 119 

Ba2+ 161 142 135 

Ti4+ 61 

Nb5+ 64 

Zr4+ 72 

O2- 142 140 138 

Ionic radii were first computed by the crystal chemist and Nobelist Linus Pauling2 

(also of X-ray crystallography and Vitamin C fame), but revised radii that take into 
account polarization of the ion cores, and thus depend on coordination, were calculated 

more recently by Shannon and Prewitt3 and are those now generally used (Table 2). 
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Some of the stablest, and therefore most pervasive, ionic structures are those in which 

radius-ratio criteria are well satisfied for both anions and cations.  Classic examples are 
those binary equiatomic compounds that crystallize in the rocksalt (halite) structure (Fig. 

2b)—among them NaCl, KCl, LiF, KBr, CaO, SrO, BaO, CdO, VO, Fe1–xO, CoO, NiO, 
etc.—which have cation:anion radius ratios rC/rA near 0.5 (NaCl 0.563, MgO 0.514) and 

comprise cation (or anion) coordination octahedra (e.g. [NaCl6] octahedra) that share 

edges. For more similar ion sizes, the CsCl structure is preferred (CsCl itself has rC/rA = 
0.96) in which Cs1+ ions sit in the centers of cubes of Cl– ions ([CsCl8] cubes) that share 

faces (Fig. 2). 

Fig. 2.  �(8:8) structure of CsCl, in which each ion is 8-coordinated by ions 
of the opposite charge, may also be thought of as [CsCl8] 
coordination cubes that share all faces. 

Linus Pauling’s rules for crystalline compounds (Table 3) codify these notions 
and provide rationalization for structural tendencies observed in systems with ionic 

bonding. Despite being couched in terms of ion size, these rules turn out to be essentially 

driven more by the consideration of minimizing electrostatic energy (which can be 
accounted in a proper Madelung summation), than by the geometric necessities of ionic 

radii, however represented. 
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Table 3. Pauling’s Rules for Crystalline Ionic Compounds 

Rule 1. Coordination. A coordination polyhedron of anions is formed 
around every cation (and vice versa) and is stable only if the cation is in 
contact with each of its neighboring anions. The distance between 
anions and cations is thus the sum of the their ionic radii, and the 
coordination number of the cation will be maximized subject to the 
criterion of maintaining cation-anion contact. 
Rule 2. Electrostatic Valency. The total strength of valency “bonds” 
that reach an anion from all of its neighboring cations equals the charge 
of the anion. 
Rule 3. Polyhedral Linking. Cation coordination polyhedra tend to be 
linked through sharing of anions, at corners first, then edges, then 
faces—in this order because of the increasing electrostatic repulsion 
between cations for these successive choices. 
Rule 4. Cation Evasion. The electrostatic repulsion between cations is 
greatest for cations of high charge and small coordination number.  Thus, 
in crystals containing different cations, those with higher charge and 
smaller coordination number are likely to share fewer polyhedral 
elements. 
Rule 5. Crystal Homogeneity. The number of structurally distinct sites 
in a crystalline arrangement of ions tends to be small.  This condition 
ensures that chemically similar atoms experience similar environments. 

Li

Ionic radii and radius ratios do not actually do a very good job in predicting the 

structure adopted by a given compound, even in such simple binary compounds as alkali 

halides, for which Table 1 would predict (4:4) zincblende structure for 0.225 < rc/rA < 
0.414, (6:6) rocksalt structure for 0.414 < rC/rA < 0.732, and (8:8) CsCl structure for 0.732 

< rC/rA < 1.   In actuality, LiF (rC
IV/rA

IV = 0.451) only just escapes zincblende structure (the 
1+ ion does almost rattle around in its cage of six F1– ions), but LiBr (rC

VI/rA
VI = 0.388) 

VIand LiI (rC
VI/rA = 0.345), which also adopt the rocksalt structure, are incorrectly 

predicted to be zincblende.  NaF (rC
VI/rA

VI = 0.767 ), KF (rC
VI/rA

VI = 1.038), RbF (rC
VI/rA 

VI= 1.128), and CsF (rC
VI/rA = 1.256), all of which adopt the rocksalt structure, are 

likewise incorrectly predicted to be CsCl.  Ionic radii and radius ratios must therefore be 
used with caution in assessing structural options for compound solids. 

Often, ionic crystals can be described alternatively4 as close packed lattices of 

anions into which cations are inserted at interstitial sites (Fig. 3a).  In this description of 
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the rocksalt structure of MgO, Mg2+ cations occupy every octahedral interstice in a cubic 

close-packed array of O2– anions. The corundum structure adopted by α-Al2O3, consists 

(a) (b) 

Fig. 3. (a) Octahedral cages (green) surrounding octahedral interstitial sites in a 
cubic close-packed array of anions.  (b) Placement of Mg2+ cations (red) 
in every octahedral interstice of a cubic close-packed array of O2– anions 
to form the rocksalt structure adopted by the compound MgO. 

of a (nearly) close-packed hexagonal assembly of O2– anions, two-thirds of the octahedral 
interstices of which are occupied by Al3+ cations. In magnetite, Fe3O4, which adopts the 

(inverse) spinel structure, Fe3+ cations occupy 1/8 of the tetrahedral interstices and Fe2+ 

cations 1/2 the octahedral in a cubic close-packed array of O2– anions. Perovskite 
compounds—the subject of this laboratory experiment, with chemical formulae of the 

form ABO3—can be thought of as cubic stacking of close-packed layers comprised of O2– 

anions and A-site cations (in the ratio AO3) in which 1/4 of the octahedral interstices are 

occupied by B cations.  Pauling’s first rule still applies here, in that the cation placed in 

an interstitial site must not “rattle” around in the interstitial space if it is to stabilize the 
crystal structure. 

The crystalline mineral pervoskite (CaTiO3), from which the associated structural 
class takes its name, was discovered in the Russian Ural Mountains by Gustav Rose in 

1839 and named for the Russian mineralogist L. A. Perovski (1792-1856).   A more 

illuminating description of the idealized perovskite structure involves linking of Pauling’s 
coordination polyhedra (Fig. 4b) in accordance with Pauling’s rules. [TiO6] octahedra 

-6�-



Figure removed for copyright reasons. 

comprising small, highly-charged Ti4+ cations surrounded by 6 O2– anions share only 
corners (unlike [MgO6] octahedral in the rocksalt structure, comprising larger, less highly 

charged Mg2+ cations, which share edges), in keeping with Pauling’s third rule, in a cubic 

arrangement. In this configuration, O2– anions thus share valency “bonds” with two Ti4+ 

cations. The arrangement also defines a large interstitial space which can be occupied by 

a large cation of lower charge, in this case Ca2+, which is 12-coordinated by O2– anions in 
[CaO12] truncated cubes that share square faces with each other and triangular faces with 

O2– 

Ca

neighboring [TiO6] octahedra, as allowed by Pauling’s fourth rule.   anions thus 

additionally share valency “bonds” with four Ca2+ cations, satisfying Pauling’s second 
rule (the two Ti4+ cations each contribute 2×4/6 = 16/12 “valency bonds” and the four 

2+ cations 4×2/12 = 8/12 “valency bonds” to each O2– anion, for a total of 24/12 = 2 

“bonds,” which equals the ionic charge –2= 2 of the O2- anions). The fact that the 

ideal crystal structure of perovskite, in fact, satisfies Pauling’s Rules rather well implies 

substantially ionic character to the bonding—although it is known that the Ti-O bond has 
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Fig. 4. Two representations of the ABO3 pervoskite structure. a) B-centered
representation, showing octahedral cage of O2– anions surrounding a Ti4+

cation in BaTiO3, and b) A-centered representation, with superimposed
linkages of [TiO6] coordination octahedra, through corner sharing of
oxygen anions, that define a large central interstice occupied by the large
Ba2+ ion. (Reproduced from W. D. Kingery et al., ref. 4).



significant covalency and Ti is 6-coordinated by O mostly because this maximizes the 

covalent bonding, not because the ionic radius-ratio rTi
4+/rO

2– = 75 pm/126 pm = 0.60 is 
consistent with octahedral ionic coordination. 

O

The perovskite structure is adopted by a large number of other A2+B4+O3 

compounds, among them (besides CaTiO3) SrTiO3, BaTiO3, PbTiO3, PbZrO3 and CaZrO3, 

which you will study, and additionally compounds such as KNbO3 in which a large K1+ 

cation is charge-compensated by a small Nb5+ cation. The radius-ratio criterion 
(Pauling’s first rule) is, however, precisely satisfied only by SrTiO3 (which is cubic); 

other combinations of A and B cations do not ensure that the cations are “in contact” with 
2– anions. Geometrical contact of hard ion spheres occurs only if (rA + rO) = √2(rB + rO). 

A structural tolerance parameter5 can be thus defined 

t  = (rA + rO)/√2(rB + rO) (1) 

that defines the limits of 6-fold and 12-fold coordination for the B and A cations in this 

structure type; the perovskite structure type is stable generally only within the range 

Table 4. Tolerance Parameter for Perovskite Structure Compounds 

CaZrO3 CaTiO3 PbZrO3 SrTiO3 PbTiO3 BaTiO3 KNbO3 

0.914 0.964 0.964 0.999 1.017 1.059 1.127 

0.75 < t < 1.10 (Table 4).  For t < 0.90, a cooperative buckling of the corner-sharing 

octahedra occurs that increases the lattice parameter.  For 0.90 < t < 1, small distortions 
or rotations of the octahedra occur (Fig. 5c) that provide cation-anion “contact” but lower 

the crystal symmetry from cubic to orthorhombic.  For t > 1, highly correlated uniaxial 
displacements of the B cations occur (Fig. 5a) that convert the cubic symmetry to 

tetragonal symmetry by selective elongation of one axis.  Presence of these distortions, 

rotations or displacements is easily distinguished by the appearance in diffraction patterns 
of diffraction maxima that are forbidden (have zero structure factor, see below) for the 
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(c) 
Fig. 5.  �Distortions of the pervoskite structure accompanying departures from ideality in 

ion radius ratio. a) Highly correlated uniaxial displacements of undersized Ti4+ 

cation that result in a tetragonal variant of BaTiO3 (t = 1.059), stable below the 
Curie temperature but reverting to b) an average-cubic ideal structure above the 
Curie temperature when the directions of the displacement become uncorrelated. 
c) Tilting of the [ZrO6] octahedra in CaZrO3 (t = 0.914), typical of non-ideal 
perovskites with overlarge B cations and tolerance parameters 0.9 < t < 1.0, that 
results in orthorhombic symmetry. 

cubic structure and the splitting of certain diffraction peaks (e.g. those of the family 
{h00}) that would have arisen from crystallographically equivalent planes in the cubic 

system. They are also responsible for an intriguing array of unusual electrical properties 
(ferroelectricity, piezoelectricity [BaTiO3, Pb(Zr,Ti)O3], electrostriction [Pb(Mg,Nb)O3, 

fast ion conduction [LaMnO3]) and magnetic properties (magnetoresistance 
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[(La,Ca)MnO3, (La,Sr)CoO3]). The cubic→tetragonal transformation temperature 

corresponds to the Curie temperature, below which ferroelectric behavior appears. 

Even in SrTiO3, the ideal cubic perovskite arrangement is stable as a sort of 
“average” structure only above –55˚ C.  As the temperature is lowered below the critical 

temperature, SrTiO3 undergoes an increasing tetragonal distortion, similar to that of 
room-temperature BaTiO3 and PbTiO3 (Fig. 4a) whose own critical temperatures for the 

cubic→tetragonal transformation are 130˚ C and 490 ˚C, respectively. 

X-ray Diffraction 

A periodic arrangement of atoms, such as that found in a crystal, will give rise to 

constructive interference of scattered (“diffracted”) radiation having a wavelength 
λ comparable to or smaller than the periodicity d when Bragg’s law5 is satisfied, 

n λ  = 2d sin Θ/2 , (2) 

where n is an integer and Θ is the angle of between the initial wave incident along 

direction k and the scattered wave  departing along direction k′. The magnitude of both 

wave vectors is given by k = k′ = 1/λ. The scattering angle Θ can also be defined 

by a scattering vector 

κ  = k′ – k = 2 (sinΘ/2)/λ = 2 (sinθ)/λ (3) 

where θ = Θ/2, θ = θB at the Bragg condition, and θB is known as the Bragg angle.  Hard 

X-rays (λ~ 0.1 nm) comprise electromagnetic radiation that satisfies the wavelength 

criterion for structure investigation at the atomic level (d ~ 0.1 nm) and is scattered 
sufficiently strongly by atoms (about 1 part in 104) to provide a practical tool for 

materials structure identification.  Bragg’s law (2) tells us necessary conditions for 

diffraction, but provides no information regarding intensities of the constructive maxima, 
which are necessary information if we are to deduce the details of atomic structure.  In 

order understand the relationship between structural chemistry of solids and the intensity 
of diffracted X-rays, a more rigorous approach to diffraction must be pursued5, an 

intuitive but non-rigorous version of which follows. 
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For a one-dimensional array of atoms spaced a apart (Fig. 6), the condition for 

constructive interference can be determined from the phase shift of the diffracted wave 
scattered from each atom, as deduced from the difference in path lengths traveled by 

incident and diffracted waves from a common initial incident wave front. 

unit vector k′/k of�
diffracted beam�

a 
ν 

µ 
y 

x 

x = a cos ν� unit vector k/k of 
y = a cos µ� incident beam 

Fig. 6. �Geometry for constructive interference from a one-dimensional array 
of atoms spaced a apart. 

The total path difference x – y, deduced by geometry from Fig. 6, must be equal to an 

integer multiple of the wavelength λ at the Bragg condition for constructive interference 

x – y  = a cos ν – a cos µ  = (k′/k – k/k) • a  = hλ� (4) 

where h is an integer and the scattering angle Θ = µ – ν. By extrapolation to three 

dimensions, with respective atom spacings a, b and c, the condition for constructive 

interference becomes 

κ • a  = h�

κ • b  = k (5)�

κ • c  = l�

where h, k and l are the Miller indices of families of parallel planes that contain the 
atoms. 
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If a set of such identical parallel planes, whose interplanar spacing is d, is oriented 

normal to the horizontal axis of Fig. 6, so that the spacing vector d is along that axis, then 
the condition (5) becomes 

κ • d = h (5′) 

Using the definition (3) for the scattering vector κ, (5′) may be rewritten 2sinθ/λ • d =  h, 

or 

h λ  = 2d sin Θ/2 , (2′) 

θ

which is identical to Bragg’s law (2) with n = h and κ aligned along d. The scattering 

maxima are frequently (but inaccurately) called “reflections” because, oriented in the 

Bragg condition, these planes appear to act as mirrors for the radiation at discrete angles 

Β that from the diffraction geometry can be shown to represent simultaneously the 

angles of both incidence onto and reflection from these planes at the Bragg condition.  A 
vector g oriented along d with magnitude 1/d—known as a reciprocal space vector 

because, like k, k′ and κ, it has dimensions of reciprocal length—can be used to rewrite 

(5) as

κ = g (5′′) 

called the Laue condition, after the German physicist Max von Laue, who first set out the 

formal theory of X-ray diffraction from crystals in 1912. 
The amplitude scattered by an atom is called the atomic scattering amplitude.  X-

rays are electromagnetic field waves that interact with the electrically charged 

constituents of an atom (electrons, protons) and most significantly with the less massive 
electrons of an atom.  The scattered X-ray amplitude is usually referenced to the 

amplitude scattered by a single electron as the atomic scattering factor fn, which is 

proportional to the number of electrons in an atom, and thus to the atomic number Z of 
atom n. Hence, atoms of higher Z scatter more strongly than do lighter elements.  The 

atomic scattering factor is a function of κ and thus, from (3), of Θ and λ (Fig. 7).  For λ ~ 
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n

0.1 nm X-rays, the scattered amplitude is reduced by half at scattering angles Θ = 2θ ~ 

100˚. 

f 

sinθ/λ 

Z 

Fig. 7. Variation of atomic scattering factor f with scattering angle. 

For non-monatomic solids, or for a non-primitive choice of unit cell, a periodic 

array of unit cells may be substituted for atoms in Fig. 6, with the same Bragg result (2). 
The amplitude scattered from a single unit cell having M atoms is proportional to the 

structure factor F(κ), defined as 

M 
F(κ) = ∑ fn exp (2π i κ • rn ) (6) 

n=1 

where 
rn  = xn a + yn b + zn c (7) 

is the atomic position vector for the nth atom in the unit cell and (xn, yn, zn) are the atomic 
position coordinates. 
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Substituting the atomic positions rn from (7) into the structure factor (6), and 

using (5) to represent the crystal orientation at the Bragg condition with a, b and c 
representing the unit cell vectors 

M 
F(κ) = ∑ fn exp [2π i (hxn + kyn + lzn )] (8) 

n=1 
or 

M 
Fhkl = ∑ fn exp [2π i (hxn + kyn + lzn )] (9) 

n=1 

For example, for a monatomic body-centered cubic structure (Fig. 8) there are two atoms 
per unit cell, located at (0,0,0) and (1/2,1/2,1/2). 

Fig. 8. Monatomic body-centered cubic (non-primitive) unit cell with 
atoms located at positions (0,0,0) and (1/2,1/2,1/2). 

Expanding the structure factor for the unit cell results in the relationship

 Fhkl = f exp[2π i(0)] + f exp[2π i (h/2 + k/2 + l/2)] = f  + f exp[π i(h + k + l)] (10) 

yielding 
Fhkl  = 2f for h+k+l  = even (11) 

Fhkl  = 0 for h+k+l  = odd. 

The coherently scattered intensity is related to the structure factor by 

I

Icoh ∝ F F* = Fhkl;2  = 4 f2 for h+k+l  = even (12) 

coh  = 0 for h+k+l  = odd 
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where F* represents the complex conjugate of F. Note that the total coherent intensity 

will be a sum of the contributions from all unit cells in the crystal. For a body-centered 
cubic crystal, reflections from planes with Miller indices where h+k+l is an odd integer 

will be absent from the diffraction pattern, while reflections from {110}, {200}, {211}, 
etc. with h+k+l an even integer will all be present, reducing in intensity as h+k+l (and 

hence 2θ) increases (Fig. 9) 

I 
110 

200 

211 
220 

2θ 

Fig. 9. �Discretely-peaked coherent scattering intensity from a body-centered 
cubic crystal, with peaks indexed with Miller indices of “reflecting” 
planes. 

In the heuristic case considered, constructive interference occurs only at the exact 
Bragg angle and the I vs. 2θ plot exhibits sharp lines of intensity that, mathematically, are 

δ-functions. In reality, Bragg diffraction peaks exhibit finite breadth, due both to 

instrumental and material effects, and the number of unit cells scattering is proportional 
to the square root of the integrated area under the broadened peak.  An important source 

of line broadening in polycrystalline materials is finite crystal size.  In crystals of finite 
dimensions, there is incomplete destructive interference of waves scattered from angles 

slightly deviating from the Bragg angle. If we define the angular width of a peak as 

B  = 1/2 (2θ1 – 2θ2),� (13) 
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then the average crystal size w  can be estimated from the Scherrer formula6 as: 

w = 0.9λ/BcosθB (14) 

A more elegant treatment7 shows the peak width B to be, mathematically, the Fourier 

transform in κ-space of the crystal size w. Excessive broadening of diffraction peaks 

from very fine powders can prove problematical for distinguishing closely-spaced peaks. 
Interplanar spacings dhkl can be calculated for different hkl planes from fixed 

geometric relationships for a given crystal system with unit cell length parameters a, b 

and c and (in the case of the monoclinic system) the characteristic angle β included 

between a and c (Table 5). 

Table 5. Planar Spacings d in Five Crystal Systems 

Cubic: 1/d2  = (h2 + k2 + l2)/a2 

Orthorhombic: 1/d2  = h2/a2 + k2/b2 + l2/c2 

Tetragonal: 1/d2  = (h2 + k2)/a2  + l2/c2 

Hexagonal: 1/d2  = 4/3 [(h2 + hk + l2)/a2] + l2/c2 

Monoclinic: 1/d2 = (1/sin2β) [h2/a2  + k2 sin2β /b2  + l2/c2  – 2hl cosβ /ac] 

Experimental Procedure 

You will be supplied with powders of the following six compounds: CaTiO3, 

SrTiO3, BaTiO3, PbTiO3, PbZrO3 and CaZrO3. Prepare at least five samples for X-ray 
powder diffractometry, including SrTiO3. Process the diffraction patterns acquired by 

removing the background and then indexing the peaks using JADE® software and the 

Powder Diffraction File.  Compare your peaks to those contained in the PDF for the 

respective ABO3 compounds. 

-16�-



Report 

In addition to describing your experimental procedure and relating your results to 
what you have learned about ionic radii and the pervoskite structure, your report should 

include the following: 

• A derivation of an expression for the structure factor of SrTiO3 and a list of the first 

ten allowed Bragg maxima in order of increasing diffraction angle. 

• A calculation of the lattice parameter of SrTiO3 and the ionic radii of Sr2+ and Ti4+, 
using your X-ray data. Plot the lattice parameter deduced from each indexed peak 

against diffraction angle Θ = 2θ to deduce the most accurate value for the lattice 

parameter (why?). 

• An explanation of how the size of the A atom in ABO3 (with B = Ti) affects the 

temperature at which the cubic→tetragonal transformation occurs, and an estimate of 

the cubic→ orthorhombic transformation temperature in CaTiO3, using the 

transformation temperatures for SrTiO3, BaTiO3 and PbTiO3 supplied earlier. 

• An explanation for any peaks not accounted for in your diffraction patterns.

• An explanation for any observed inconsistency in the tetragonal peak splittings for 

BaTiO3 and PbTiO3 with their calculated tolerance parameters.  (You may want to 

consult the notes for Professor Stellacci’s counterpart α3 experiment.) 
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