
x

y
z

MIT 3.016 Fall 2005 � W.C Carter Lecture 16 c 98 

Oct. 31 2005: Lecture 16: 

Integral Theorems 

Reading: 
Kreyszig Sections: §9.8 (pp:510–14) , §9.9 (pp:515–20) 

Higher­dimensional Integrals 
The fundamental theorem of calculus was generalized in a previous lecture from an integral 
over a single variable to an integration over a region in the plane. Specifically, for generalizing 
to Green’s theorem in the plane, a vector derivative of a function integrated over a line and 
evaluated at its endpoints was generalized to a vector derivative of a function integrated over 
the plane. 

Figure 16­1: Illustrating how Green’s theorem in the plane works. If a known vector 
function is integrated over a region in the plane then that integral should only depend 
on the bounding curve of that region. 
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Figure 16­2: Illustration of a generalization to the Green’s theorem in the plane: Suppose 
there is a bowl of a known shape submerged in a fluid with a trapped bubble. The bubble 
is bounded by two different surfaces, the bowl down to z = 0 and the planar liquid surface 
at that height. Integrating the function 

�
dV over the bubble gives its volume. The 

VB 

volume must also be equal to an integral 
� �

∂VB 
zdxdy over the (oriented) surface of the 

liquid. However, the volume of bubble can be determined from only the curve defined 
by the intersection of the bowl and the planar liquid surface; so the volume must also 
be equal to 

�
C
(some function)ds. 

The Divergence Theorem 

Suppose there is “stuff” flowing from place to place in three dimensions. 
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Figure 16­3: Illustration of a vector “flow field” J� near a point in three dimensional 
space. If each vector represents the rate of “stuff” flowing per unit area of a plane 
that is normal to the direction of flow, then the dot product of the flow field integrated 
over a planar oriented area A is the rate of “stuff” flowing through that plane. For 
example, consider the two areas indicated with purple (or dashed) lines. The rate of 

ˆ ˆ“stuff” flowing through those regions is J� A�B = J� kAB and J� A�L = J� kAL. · · · · 
If there are no sources or sinks that create or destroy stuff inside a small box surrounding 

a point, then the change in the amount of stuff in the volume of the box must be related to 
some integral over the box’s surface: 

d 
dt 

(amount of stuff in box) = 

= 

d 
dt 

� 

box 
( 
amount of stuff 

volume 
)dV 

� 

box 

d 
dt 

( 
amount of stuff 

volume 
)dV 

� (16­1) 
(some scalar function related to J�)dV
=


box 

= 
� 

J� d �Abox · 
surface 
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Figure 16­4: Integration of a vector function near a point and its relation to the change 
in that vector function. The rate of change of stuff is the integral of flux over the 
outside—and in the limit as the box size goes to zero, the rate of change of the amount 
of stuff is related to the sum of derivatives of the flux components at that point. 

To relate the rate at which “stuff M” is flowing into a small box of volume δV = dxdydz 
located at (x, y, z) due to a flux J�, note that the amount that M changes in a time Δt is: 

ΔM(δV ) = (M flowing out of δV ) − (M flowing in δV ) 

� dx = J(x − 
2 )̂idydz− J�(x + dx îdydz 

2 ) · 
� dy J�(y + dy+ J(y − 

2 )ĵdzdx− 
2 ) · ̂jdzdx Δt 

(16­2)
dz� dz kdxdy− J�(z + kdxdy + J(z − 

2 )
ˆ

2 ) · ˆ
∂Jx ∂Jy ∂Jz 

= + + )δV Δt + O(dx4)−( 
∂x ∂y ∂z 

If C(x, y, z) = M(δV )/δV is the concentration (i.e., stuff per volume) at (x, y, z), then in the 
limit of small volumes and short times: 

∂C −( 
∂Jx ∂Jy ∂Jz 

= + + ) = −� · J� = −divJ� (16­3)
∂t ∂x ∂y ∂z 

For an arbitrary closed volume V bounded by an oriented surface ∂V : 

dM d 
� � 

∂C 
� 

= CdV = dV = JdV = − 
� 

∂V 
J� d �A (16­4)

dt dt V V ∂t 
− 

V 
� · � ·
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The last equality � 

V 
� · �JdV = 

� 

∂V 

�J · d �A (16­5) 

is called the Gauss or the divergence theorem. 

Mathematica r� Example: Lecture­16 
Hamaker Interaction between a point and Closed Volume 

Calculating the Van der Walls potential (also called London Dispersion potential) 
of a point­particle the vicinity of a finite cylinder. The interaction energy due two 
induced dipoles, one located at �r = (ξ, η, ζ) and another located at �x = (x, y, z) goes 
like −1 

(16­6) ��r − �x�6 

Integrating this function for �r ranging over the volume of a cylinder of length L and 
radius R will give the potential for a point particle located at �x due to the entire 
cylinder. This integration has no simple closed form, so a numerical integration is 
necessary. The following method, using the divergence theorem, makes the numerical 
integration more efficient by converting a volume integral to a surface integral of a 
vector potential. 

Integrating a vector potential over a surface 

Stokes’ Theorem 

The final generalization of the fundamental theorem of calculus is the relation between a 
vector function integrated over an oriented surface and another vector function integrated over 
the closed curve that bounds the surface. 
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A simplified version of Stokes’s theorem has already been discussed—Green’s theorem in 
the plane can be written in full vector form: 

� � �
∂F2 ∂F1 

� � 
F d �dxdy = A 

R ∂x 
− 

∂y R 
�× � · 

(16­7)� � 
� d�r 

= (F1dx + F2dy) = F ds · 
ds∂R ∂R 

as long as the region R lies entirely in the z = constant plane. 
In fact, Stokes’s theorem is the same as the full vector form in Eq. 16­7 with R generalized 

to an oriented surface embedded in three­dimensional space: 
� 

F d �A = F ds (16­8)· 
dsR 

�× � · 
� 

∂R 

� d�r 

Plausibility for the theorem can be obtained from Figures 16­1 and 16­2. The curl of the 
vector field summed over a surface “spills out” from the surface by an amount equal to the 
vector field itself integrated over the boundary of the surface. In other words, if a vector field 
can be specified everywhere for a fixed surface, then its integral should only depend on some 
vector function integrated over the boundary of the surface. 

Maxwell’s equations 
The divergence theorem and Stokes’s theorem are generalizations of integration that invoke 
the divergence and curl operations on vectors. A familiar vector field is the electromagnetic 
field and Maxwell’s equations depend on these vector derivatives as well: 

∂ �B 
B = 0 E =� · � �× �

∂t (16­9) 
∂ �D 

H = + �j D = ρ�× �
∂t 

� · �

in MKS units and the total electric displacement � P andD is related to the total polarization �

the electric field �E through:

D = P + �oE (16­10) 

where �o is the dielectric permittivity of vacuum. The total magnetic induction �B is related 
to the induced magnetic field �H and the material magnetization through 

B = µo( � �� H + M ) (16­11) 

where µo is the magnetic permeability of vacuum. 

Ampere’s Law 

Ampere’s law that relates the magnetic field lines that surround a static current is a macro­
scopic version of the (static) Maxwell equation �× H = �j: 
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Gauss’ Law 

Gauss’ law relates the electric field lines that exit a closed surface to the total charge 
contained within the volume bounded by the surface. Gauss’ law is a macroscopic version of 
the Maxwell equation � · �D = ρ: 


