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Dec. 05 2005: Lecture 26: 

Solutions to Common ODEs 

Reading:

Kreyszig Sections: 4.3 (pp:205–208) , 4.5 (pp:218–225) , 4.6 (pp:228-232)
§ § §

Special Functions 

Most calculators have a button that evaluates the eigensolution to the simple first-order 
ODE dy/dt = λy. Also, most calculators have buttons that evaluate the eigensolutions to the 
simple second-order ODE: d2y/dt2 = λy. 

Of course, these are also just the exponential and trigonometric functions. 
However, there are many more simple differential equations that follow from physical mod­

els and these also have known solutions that are not simple combinations of sines, cosines, 
and exponentials. The solutions to these differential equations are called special functions. 
Mathematica R has an extensive list of special functions and these are collected in its help 
browser. 

For example, the positions of a vibrating drum head are modeled with in cylindrical coor­
dinates by Bessel’s equation: 

d2h dh 2 22 r + r + (k2 r − m )h = 0 
dr2 dr 

ρ2 d
2h 

+ ρ
dh 

+ (ρ2 − m 2)h = 0 
(26-1) 
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where in the second equation ρ = kr. The displacement of the drum is h(r); k is related to 
an inverse wavelength (e.g., the wavelength would be the radius of the drum divided by the 
number of maxima in the drum head shape) and m is the mode (e.g., the number of maxima 
traversing the drum by 2π in a circular direction). 

There two solutions to Bessel’s equation and the general solution is the sum the two: 

h(r) = C1Jm(kr) + C2Ym(kr) 
(26-2)

h(ρ) = C1Jm(ρ) + C2Ym(ρ) 

where Jm(x) is called (naturally enough) an order-m Bessel function of the first kind and 
Ym(x) is called (naturally enough) an order-m Bessel function of the second kind. These are 
analogous to the sines and cosines, but for a different ODE. 

Another equation that appears in models of the angular deformations of body in a central 
force potentials (for example, the ion distribution about a fixed charge; or, the Schrödinger 
equation for the electron in a hydrogen atom) in spherical coordinates is Legendre’s equation: 
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where µ ≡ cos θ so that −1 ≤ µ ≤ 1. The value � is related to the number of modes in the θ 
direction and m is related to the number of modes in the φ direction. 

Legendre’s equation has two solutions: 

Ξ(µ) = C1Plm(µ) + C2Qlm(µ) (26-4) 

The eigensolution Plm(µ) is called (again, naturally enough) order m Legendre functions of 
the first kind and Qlm(µ) are called order lm Legendre functions of the second kind. 

There are many other types of special functions. 

Mathematica R� Example:  
Visualizing special functions. 

Bessel and Legendre functions 

q cqckSpecial Functions in the Eigenfunctions of the Hydrogen Atom . . . . . . . . . . . . . . . . . . . . . . . 
The Shrödinger for the electron in a hydrogen atom is a partial differential equation—one 

that involves derivatives with respect than more than one variable. In the case of the hydrogen 
atom, the variables are the spherical coordinates r, θ and φ. 

A common method of solving a partial differential equation is to reduce it to a system of 
coupled ODEs by a method called separation of variables. 

The solution for the wave-functions of an electron follows from separation of variables and 
special functions arise in the solution to the ordinary differential equations—including the 
Legendre functions P�m (which are part of the spherical harmonics Y�m(θ, φ)) and Laguerre Ln 

functions. The subscripts are associated with the quantum numbers that give structure to the 
periodic table of elements. 

Mathematica R� Example: Lecture-26 
Visualizing the Hydrogen atom eigenfunctions 

Function to Display any Orbital 

Lecture-26


