
� 

MIT 3.016 Fall 2005 � W.C Carter Lecture 26 c 167 

Dec. 05 2005: Lecture 26: 

Solutions to Common ODEs 

Reading:

Kreyszig Sections: 4.3 (pp:205–208) , 4.5 (pp:218–225) , 4.6 (pp:228-232)
§ § §

Special Functions 

Most calculators have a button that evaluates the eigensolution to the simple first-order 
ODE dy/dt = λy. Also, most calculators have buttons that evaluate the eigensolutions to the 
simple second-order ODE: d2y/dt2 = λy. 

Of course, these are also just the exponential and trigonometric functions. 
However, there are many more simple differential equations that follow from physical mod

els and these also have known solutions that are not simple combinations of sines, cosines, 
and exponentials. The solutions to these differential equations are called special functions. 
Mathematica R has an extensive list of special functions and these are collected in its help 
browser. 

For example, the positions of a vibrating drum head are modeled with in cylindrical coor
dinates by Bessel’s equation: 
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(26-1) 
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where in the second equation ρ = kr. The displacement of the drum is h(r); k is related to 
an inverse wavelength (e.g., the wavelength would be the radius of the drum divided by the 
number of maxima in the drum head shape) and m is the mode (e.g., the number of maxima 
traversing the drum by 2π in a circular direction). 

There two solutions to Bessel’s equation and the general solution is the sum the two: 

h(r) = C1Jm(kr) + C2Ym(kr) 
(26-2)

h(ρ) = C1Jm(ρ) + C2Ym(ρ) 

where Jm(x) is called (naturally enough) an order-m Bessel function of the first kind and 
Ym(x) is called (naturally enough) an order-m Bessel function of the second kind. These are 
analogous to the sines and cosines, but for a different ODE. 

Another equation that appears in models of the angular deformations of body in a central 
force potentials (for example, the ion distribution about a fixed charge; or, the Schrödinger 
equation for the electron in a hydrogen atom) in spherical coordinates is Legendre’s equation: 
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where µ ≡ cos θ so that −1 ≤ µ ≤ 1. The value � is related to the number of modes in the θ 
direction and m is related to the number of modes in the φ direction. 

Legendre’s equation has two solutions: 

Ξ(µ) = C1Plm(µ) + C2Qlm(µ) (26-4) 

The eigensolution Plm(µ) is called (again, naturally enough) order m Legendre functions of 
the first kind and Qlm(µ) are called order lm Legendre functions of the second kind. 

There are many other types of special functions. 

Mathematica R� Example:  
Visualizing special functions. 

Bessel and Legendre functions 

q cqckSpecial Functions in the Eigenfunctions of the Hydrogen Atom . . . . . . . . . . . . . . . . . . . . . . . 
The Shrödinger for the electron in a hydrogen atom is a partial differential equation—one 

that involves derivatives with respect than more than one variable. In the case of the hydrogen 
atom, the variables are the spherical coordinates r, θ and φ. 

A common method of solving a partial differential equation is to reduce it to a system of 
coupled ODEs by a method called separation of variables. 

The solution for the wave-functions of an electron follows from separation of variables and 
special functions arise in the solution to the ordinary differential equations—including the 
Legendre functions P�m (which are part of the spherical harmonics Y�m(θ, φ)) and Laguerre Ln 

functions. The subscripts are associated with the quantum numbers that give structure to the 
periodic table of elements. 

Mathematica R� Example: Lecture-26 
Visualizing the Hydrogen atom eigenfunctions 

Function to Display any Orbital 

Lecture-26


