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RAFAEL

JARAMILLO:

Right. So what we're going to do today is we're going to finish our coverage of statistical thermodynamics, and
then we're going to do a couple lectures, starting Monday. Friday's a holiday. So we'll do a couple lectures,
starting Monday on reacting systems, and that includes oxidation processes.

And that's mainly to have chapter 11, and then that'll be it. Then we're going to have one more hour on social
and personal, then we're going to have a game show, which I don't know how to run over Zoom. We're going to
try it. And then the last exam, which is noncumulative.

So let's pick up where we left off, max entropy and the Boltzmann distribution. And this is continued, continued
from the last lecture. So I don't like to do this, where I continue a derivation of something across two lectures,
but that's how I broke.

So from last time, just at a high level, we decided that we wanted to optimize entropy for an isolated system. And
we had Boltzmann entropy formula, so we could do some math. And we could write down the S equals 0 subject
to constraints. And the constraints being conservation of energy and conservation of mass.

And we're going to do this using the method of Lagrange multipliers. And we had two of them because we had
two constraints, alpha and beta. And we ended up with an expression like this, some stuff, so coefficient,
independent variables. And in order to get our max entropy condition, I should say optimize entropy, we have to
set these coefficients to zero. So it was a very familiar thermodynamic thing that we did, and what? We
determined the first multiplier by normalization.

So this is where we left off. Where we left off was the following. We had ni over n total. So this is a distribution
function of fractional distributions of particles in state I normalized by the total number of particles. And it was
like this, this multiplayer beta as yet undetermined, energy of state I normalized by Boltzmann's constant. And
that whole thing normalized by Q, which was the partition function. And this was the sum of all possible states e
to the beta epsilon i over Boltzmann's constant. And so this is where we left things.

So now what we're going to do is we're going to determine beta. We're going to determine beta by considering a
microscopic, reversible process where some of the particles change their shape. So we're going to do this. We're
going to analyze ds for a process of some state changes. And I'm going to just go ahead and write down the
equations that we've been using and developing for this. ds equals log n of i over n total. dn of i, you can pull
that from the last two lectures. But now we actually have an expression for this distribution, so we're going to use
that expression, kb sum over i.

The distribution is e to the beta epsilon i over Boltzmann constant over Q, then we have some logs of
exponentials and things. So we can simplify this a little bit. And this equals minus beta sum over i epsilon i dn of i
plus k beta log of Q sum over i dn of i. And taking our definitions, this equals minus beta du plus kb log of Q dn
total.

So first thing to note, this is zero by construction. This is the Lagrange multiplier working, because we wanted ds
to be 0 under conditions where du was 0 and dn total were 0. And we see that for this distribution, it works out.
So Lagrange multiplier worked. The method worked. So I'm going to say 0 by construction. I really like this orange
pen, but life is too short for fading sharpies.



So by construction, this is zero. If you'd like, you can convince yourself that if you have a different distribution
function here, if you have a different distribution function, not this distribution, let's say a flat distribution
function, a distribution function that doesn't depend on energy or has some other functional dependence of
energy, I don't know what polynomials, you can put anything in there, you can show that that in that case, ds will
not be 0. So again, Lagrange multiplier method works.

But here's the takeaway. We want to compare this to what we have derived two months ago from the combined
statement, which is that ds equals 1 over t du plus p over t dv minus mu over t dn. And this is really the
important thing here. We are comparing the coefficients. We're comparing the coefficients. And if you remember,
this is almost like general strategy stuff. If you compare coefficients, you can buy inspection, set like coefficients
to like.

So what is ds, du at fixed volume and fixed particle number? Well, from our statistical method, that's minus beta,
but from the classical method, that's 1 over temperature. And so we can simply conclude that beta equals minus
1 over temperature. So now with that identified, we have the Boltzmann distribution. Oh, there's more paper. So
with beta equals minus 1 over temperature, we have the Boltzmann distribution.

Number of particles in state I normalized by the total number of particles equals e to the minus Ei over kbT
normalized by the partition function, where the partition function equals the sum over all states e to the minus Ei
over kbT. And this generally has a falling exponential form with state energy. So state e of i, occupation n of i, all
right, so falling exponential function.

In words, this is the distribution that maximizes entropy for an isolated system with n total particles distributed
over states with fixed energy levels, so unchanging energy levels, according to that set of occupation numbers.
And what is the state of maximum entropy for an isolated system? We have a name for that. What's the state of
max entropy for an isolated system? Think way back to late February even.

STUDENT: Maybe equilibrium?

RAFAEL

JARAMILLO:

Yeah, equilibrium. So this is an equilibrium distribution. So we have an equilibrium distribution of single-particle
energy levels, or single-particle energies. And again, you knew this already, but equilibrium does not mean
everything is at the lowest energy. All semester, we've been exploring that consequence.

So if you were at zero Kelvin, if you're at zero Kelvin, or you're a physicist, which means you have a frigid heart,
you're zero Kelvin, this is your distribution function. Everything's piled up, has zero energy. But in any real
temperature, you get energetic particles, and you get them with a distribution function.

So a couple of observations here. The first observation is maximum distribution-- sorry, said maximum--
Boltzmann distribution and likelihood. Again likelihood, this is a stealth class on statistics. That's what statistical
thermodynamics is. It's like a stealth class on statistics. So we'll ask, how much less likely is it to find a particle in
state with energy, let's say, Em-- that's an ugly epsilon-- equals El plus delta e then in state with energy El?

So that's a typical thing that you might need to analyze. So let's see. nm over nl, that's how you turn the word
problem into a math problem. How much less likely is it to find this distribution and this distribution? Within the
equilibrium distribution, how much smaller is this number than this number? And you'll find the partition
functions cancel out, and you get the following, El plus delta e over kt over e to the minus el ovet kT.



And so the e to the minus Els cancel, and you get e to the minus delta e over kT. Right. So this depends on delta
epsilon over kT, clearly. It becomes less likely with increasing energy splitting delta e, and it becomes more likely
with temperature. All right. So you're going to explore this a little bit on the p set and the context of
semiconductors.

Another point, the thermal energy. This quantity is really important. It shows up in the natural sciences over and
over and over again. And we're starting to see why. The why is what we've just shown, but the implications are
really broad. You're going to see this all over the place. So let's remind ourselves what Boltzmann constant is. It's
R over Na-- oh, that's funny-- RNa. So it's ideal gas constant divided by Avogadro's number. We have that from
before. And this is something-- let's see, 1.380e to the minus 23 joules per Kelvin. So it has units of entropy. But
that's not a number that I remember. Here's the number I do remember.

And if you work on the molecular systems, or semiconductor systems, pretty much-- well, gee, a lot of systems
that we work on in DMSE. This is a useful number to have memorized, Boltzmann's constant and units of eV per
coulomb, 8.617e-5. Why on earth would you memorize that? It sets the energy scale for likely fluctuations.

And we have-- all these words have meaning, likely fluctuations. Those words carry a lot of weight. So fluctuation,
single-particle fluctuations with energy on the order of KbT are they're likely. That's something you're going to
find, naturally occurring, as opposed to fluctuations, which are much, much larger than the thermal energy.
Those are unlikely.

We have all sorts of language for this that comes up in all sorts of contexts. For example, these fluctuations
might be called thermally activated processes. You need a little bit of thermal energy to activate it. All right. So
not only is this a number you should know, but the thermal energy at room temperature is a number you should
know.

A 298 Kelvin KbT equals-- well, in joules, it's not a number that I know because it's kind of unwieldy, but in eV, it
is a number I know. So that's the natural energy scale of molecular processes. So it's 0.0257 electron volts, or
25.7 millielectron volts. So approximately 25 millielectron volts is the thermal energy at room temperature.

So if you have a molecular system or an atomic system or an electronic system, processes with that energy are
likely to be happening spontaneously at ambient temperature. Processes with much, much higher energy are not
likely to be happening spontaneously at ambient temperature. So you can see how powerful this is. For example,
it's the foundation for the Arrhenius rate equation.

The Arrhenius rate equation-- and I'm going to use the notation from a chemistry class here-- a rate k equals a
pre factor times e to the minus activation energy divided by Boltzmann's constant times temperature. All right.
Now, this is a rate. This is an activation energy, rate and activation energy. And we are going to say hello to 3091
here. Actually may have seen that there. So that's another context, where you're going to see these
exponentials, say why, where. Where does that come from? It comes from this Boltzmann distribution that we
just derived.



More. Let's talk about-- and for one slide on this, a little dense, but this is to help you with later Let's talk about
the Maxwell-Boltzmann distribution. And I posted the wiki entry for this on website. So it's a good article to read,
and I think that the lab instructors refer to it as well. So we're going to consider particles with kinetic energy.
Kinetic energy is momentum vector modulus squared divided by 2 times a mass. That's kinetic energy of a
particle of mass.

And we're in three space, so this is px squared plus py squared plus pz squared divided by 2n. So that's the
energy per particle and state of momentum p. So what we want to do is we want to figure out the distribution of
particles as a function of energy. So this distribution in energy, I use f of v for consistency with Wikipedia.

It depends on both the Maxwell-- sorry-- the Boltzmann distribution-- I had an error in my notes there-- the Boston
distribution n of 1 over n total equals Q to the minus 1 exponent. And it's going to be minus momentum of state I
modulus squared over 2 MkT. So it depends on that, the Boltzmann distribution, and also it depends on the
density of states in momentum.

This concept of density of states is not something that we've covered in this class. If you are in 029, you've
discussed this. You're going to see it in the lab, but this really is a preview of what comes in the fall when density
of states becomes kind of-- will be second nature for you in the context of quantum mechanics. But density of
states means, well, this is the Boltzmann distribution for a given state I with this energy. How many such states
are there? How many such states are there?

So 3d differential, 4 equals 4 pi p quantity squared dp. We get the 4 pi there because they integrated the
spherical coordinates, 4 pi radians all around the sphere. And that equals 4 pi m root 2 mE dE. So this is a
distribution of states in energy E. And you combine these two things, you combine the density of states and the
Boltzmann distribution, and you get the Maxwell-Boltzmann distribution, distribution of energetic particles
zipping around on the kinetic energy included as a function of energy. And it is 2 E over pi, 1 over kT to the 3/2, e
to the minus e over kT.

So this is the Maxwell-Boltzmann distribution. And if you plot for example particle speed over probability, here's a
low temperature, you have something that's pretty sharply spiked here, intermediate temperature, and then an
high temperature. This is a series of increasing temp.

And so this has the feature that-- there are more particles that go faster at higher temperature. You can see that
coming from this exponential. And there's also a vanishingly small number of particles at zero speed. And there's
going to be some mean speed that characterizes the distribution. And that mean moves with temperature. So I
haven't derived this in detail because we haven't spent time on density of states, but we're just exploring
implications of that Boltzmann distribution. There's another implication.

The last thing I want to cover with only a couple of slides to go is the concept of ensembles, which is really just
3030 readiness. We're doing this just to show you that some concepts, which you're not going to use in this class,
but you will use in kinetics and microstructure in the fall. So before we move on to discuss ensembles, I want to
pause and take questions on the Boltzmann distribution, or Maxwell-Boltzmann or anything else, Arrhenius or
anything else related.



Who is seeing the Boltzmann distribution or this-- who's seen the Arrhenius rate law? There's not a lot of
participation on Zoom, so I understand that. I'm guessing that a large number of people raised their hands. And
then if I ask you about the Boltzmann distribution, there'd be a small number. And if I ask you about the Maxwell-
Boltzmann distribution, they'd probably be an even smaller number. But I bet that everyone's seen something of
this form somewhere before. So I hope it's a little bit satisfying for you to see where it comes from and to
understand the principles behind it, maximum entropy.

So let's talk about ensembles. Ensembles are-- what? I looked at the different definition of the Cambridge
dictionary, says-- a group of things or people acting together or taken as a whole. So this is a concept, and we're
going to use it a lot in statistical thermodynamics, if not necessarily in this class. But like, I said this is 3030
readiness here. If I didn't tell you about this, I've got in trouble with Professor Hu. All right.

So we're going to start with the microcanonical ensemble. And this is something that you've seen before,
microcanonical-- something called the microcanonical ensemble. This is the set of all possible microstates. So
this type of stuff that we've been doing, set of all possible microstates of a system with fixed energy, volume,
and particle number. So a system with fixed energy, volume, and particle number, that is that's an isolated
system.

For an isolated system equilibrium is state of max entropy. That's what we were just analyzing. All right. So this
thing, which we've been doing for the last 2 and 1/2 lectures, this is called the microcanonical ensemble. Just
gave a name to it. And so the partition function that we've been analyzing is actually better known as the
microcanonical partition function, normally written as Q, as we've been doing. And it is a sum over single-particle
energy states sum over all possible single-particle state.

And we know that we're at equilibrium with S maximize for what? For the Boltzmann distribution. So the
probability of finding particle in state I equals caused number of particles in state I at that distribution over the
total number of particles equals e to the minus eI-- you are getting sick of seeing me write this by now all right--
prob of finding a single particle in state I with energy hereby.

So this is a repeat of everything we just did. I just gave it a new name. I called it microcanonical. So again, that
name is kind of highfalutin, but there you have it. But we can generalize. So now I'm going to tell you about a
different type of ensemble. So we've been analyzing microcanonical. Now, I'm simply going to tell you about the
existence of a canonical ensemble. And please, don't ask me where these names come from.

A canonical ensemble is the set of all possible microstates of a system with fixed volume and n but not energy.
So now we're allowing the system to exchange energy. The system is closed. It's rigid and closed. So volume and
mass are conserved. System is rigid and closed but can exchange energy and form of heat with surroundings.
And the system energy, which we're now going to give a label to, u sub nu, the system energy can fluctuate.

So I want to draw for you a representation of the micro of the canonical ensemble. So we're going to imagine-- I
grab a fine tip marker-- we're going to imagine system labeled I with energy u sub I, but this thing is in thermal
contact with a lot of other systems. So we're going to imagine a whole population, or, if you like, an ensemble of
systems all with fixed volume and fixed particle number but with diathermal walls.



So if heat is like sound, you have to imagine this is an apartment building that's really noisy. Here are all your
neighbors. So the volume is fixed and the particle number is fixed, but you're exchanging energy through the
walls. But this ensemble as a whole-- so I've drawn an ensemble. I've drawn a set or a group considered as a
whole. I've drawn a bunch of subsystems now that can exchange energy with each other. Each have the same
volume. Well, that's how I've drawn it, but you can imagine they each have the same volume, each have the
same particle number, but the ensemble as a whole is isolated.

So all of these ensembles, you have to imagine this being a very, very large number here, not just 4 by 6 or
whatever I've drawn, is isolated. And so this is an ensemble, and this is an ensemble that has its own partition
function. It's known as the canonical partition function. And that's typically written a z, and this is now sum-- as
before-- sum over states. But we're not summing over single-particle states. We're summing over system energy
states, sum over all possible states of the system. So it's distinct from before when we were coming over single-
particle states and equilibrium Hold on.

When we had equilibrium in an isolated system, it was max entropy. Now, think back two months ago. When we
had equilibrium for fixed temperature and fixed pressure, that was minimum Gibbs, but there was another case,
which we haven't spent a lot of time on. It was equilibrium at fixed volume and fixed temperature. Do you
remember what thermodynamic potential we use when we have a system at fixed volume and fixed
temperature?

STUDENT: Is it Helmholtz?

RAFAEL

JARAMILLO:

Helmholtz. Equilibrium at minimum F, again, we haven't used that, this course basically, is minimized for the
distribution probability of finding system and state nu equals e to the minus u nu over kT over Z. So has the
same functional form as the bottom distribution except, instead of single-particle energies is energy of the
system as a whole, and instead of maximizing entropy, it minimizes how much free energy.

So there's something very similar That's happening here, similar to when we started with entropy, and then we
move to Helmholtz energy, and then we moved to Gibbs energy as we change the boundary conditions of the
system. And I think you'll remember in problem set 2, we really delve into this. So there's something very similar
that happens in statistical thermodynamics, where you start with the microcanonical ensemble and its partition
function, and then you go to the canonical ensemble and it's partition function, and there's more. There are other
ensembles.

The next one is called the grand canonical ensemble, and that corresponds to situations with fixed pressure and
temperature. We're not going to bother to introduce that. So this is the Boltzmann distribution, but is for the
canonical ensemble now.

STUDENT: So in this case, what was it that you held constant?

RAFAEL

JARAMILLO:

So this is equilibrium at fixed temperature. When you have an ensemble of systems that can't exchange volume
and they can't exchange particle number, but they can exchange heat energy, they reach equilibrium when the
temperature becomes constant. That's thermal equilibrium. So that's what we've done here. We've set up a
system, a collection and ensemble of subsystems, that reach thermal equilibrium with each other because they
can exchange heat energy.



It all works out. You end up getting minimum F for this distribution. This is the probability of finding system in
state nu with energy u of nu. That's what that probability is. So I want to leave you with some final words on
partition functions. We've seen some partition functions, Q and Z. And there are others, which we won't cover in
this class. We haven't really covered this. This won't be on the exam. This is just commenting on what comes
next. Again, this is in service to later classes in our curriculum.

So the partition functions, they describe equilibrium and fluctuations. The partition functions really describe the
entire thermodynamic properties of a system. So for instance, they are the basis for calculating thermodynamic
properties and expectation values. That is, most likely quantity. So for example, the mean energy of a system
can be shown to be this derivative, d log z, d 1 over kT.

That's a little bit formal, can't necessarily calculate anything yet, but in principle, if you know the partition
function, you can calculate the mean energy. heat capacity of a system is 1 over kT squared d squared log z d 1
over kT squared. The entropy of a system can be shown to be mean energy divided by temperature plus kb log z.
The Helmholtry energy of a system is minus KbT log z. And it's not just equilibrium properties, it's properties of
fluctuations.

So this gets really fun in a later class and has a lot of implications. So for example, the root mean squared energy
fluctuation of a system is another quantity that can be calculated from partition functions. So I'm just showing
you things, but if you have the partition function for a system, you can calculate the entire thermodynamic
properties of that system.

So another example is in the textbook. If you look into Hoff, they calculate the partition function for a couple of
different systems, a two-level system and then a system of a monatomic gas. And then by applying formula such
as these, they derive the ideal gas law. So it's the ideal gas law from first principles. It's no longer empirical. So
I'm going to leave you with some thoughts.

At this point, often students say, ah, this is the real stuff. This is somehow the most fundamental knowledge of
thermodynamics, is a partition functions. So why did we mess around with all that classical thermodynamics? If
the partition functions are the keys to the kingdom, why not just start there? And the answer is that, although
this approach is beautiful and elegant and very powerful in instances, it also is extremely limited because we
don't know and we can't calculate the partition functions for all but the most toy problems.

And you can see that. If we take thermodynamics in a physics department, you start from this approach. You
start from the statistical thermodynamics approach because physicists love to write problems, things as
intellectually rich but may or may not apply to the real world. We're a little bit more applied. So I'll give you an
example. There's a toy model of magnetism known as the Ising model. And the Ising model says that you can
have spins on a lattice, or magnetic moments, I should say, on a lattice, and they can face up or down. That's it.

So you have a one-dimensional chain, and each spin can face up or down. And the energy of a system depends
on the orientation of the nearest neighbor. It's a very simple model of a magnet. And so if you take a course on
magnetism, or you take a thermodynamics course in physics department, you'll probably calculate the partition
function for 1D Ising chain. It's not that hard. It's kind of fun.



However, if we simply make it a two-dimensional Ising system-- and I'm drawing the direction of the arrows at
random here, just showing you. All right. So we've just made this from one dimensional, which is definitely an
imaginary thing, to a two dimensional, which is still imaginary, but we're getting there. We're at least getting
close to real space. Calculating the partition function for this model is one of the grand intellectual achievements
of 20th century physics and, it won Lars Unger a Nobel Prize.

It's horrendously complicated mathematically. I've never been able to follow even the first page of that. It's not in
any textbooks. It's too long. So let's say I want to model a real magnet in three dimensions. Forget it. Unless
you're Nobel Prize quality, that's an open problem you have at it. But basically, the point is that for real systems
that we care about as engineers, this is a magical construct. In theory, this exists.

In theory, it allows you to calculate all the properties of the system from first principles, but in practice, it just
remains an intellectual exercise. In practice, we have to-- if you go with a much more powerful route, which is the
route of classical thermodynamics with its postulates and observations and data and models.


