3.020 Lecture 2

Prof. Rafael Jaramillo

1. Scope of thermodynamics

(a) states of matter: have well-defined response to

- squeezing
- heating
- adding more stuff
- different stuff
- applying fields

(b) Transformations between states

- Starting/final states described with certainty e.g. phase diagrams
- Process is abstract
- Kinetics is <u>not</u> described \Rightarrow <u>no time</u> in thermo \Rightarrow Thermo describes the why, only hints at the how.

2. Use of thermodynamics

- Predict & Control matter
- Transfer Knowledge e.g. phase diagrams

eg. 1-120 e latm 60:1 freeze

stuff

3. Systems in thermodynamics

- Characterized by :
 - Temperature
 - Pressure
 - Volume
 - Composition
- Draw boundaries out of <u>convenience</u>

hundary in out

e.g. adding sugar to a glass of water and stir

- System: H_2O Sugar Glass atmosphere stirring stick
- Boundaries:

open/closed rigid/not rigid adiabatic/diathermal

Types of systems: Classifications 4.

(I) Uniary=one component

v.s.

MultiComponent

e.g. sodium acetate solu. (I) Homogeneous = one phase v.s.

Heterogeneous = more than one phase e.g. sodium acetate solu.+solid sodium acetate

(I) Closed = no mass exchange with surroundings e.g. closed soda bottleOpen = can exchange masse.g. open soda bottle

State functions/variables 5.

• Characterize a system • Independent of history

Common state functions found in 3.020:

- temperature (T) • composition (c.t.%)
- mole # (N) • pressure (P)
- entropy (S)

- Gibbs free energy (G)
- volume (V) • etc.

6. Equations of state

$$X = f(\underbrace{Y_1, Y_2, Y_3, \ldots}_{\text{state fn.}})$$

e.g.
$$PV = NRT$$

 $R = \frac{PV}{NT} \propto \frac{Pa \cdot m^3}{\# \cdot K} = \frac{N \cdot m^3}{m^2 \cdot K} = \frac{N \cdot m}{K} = \frac{J}{K}$

e.g. H_2O

e.g. $H_2O + C_{12}H_{22}O_{11}$

7. Thermodynamic properties

- Compressibility $\beta = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T = \left(\frac{\partial \ln V}{\partial P} \right)_T$
- Thermal expansition $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = \left(\frac{\partial lnV}{\partial T} \right)_P$

e.g. Compressing an ideal gas at fixed temperature $V_i(P_i) \rightarrow V_f(P_f)$

$$\beta = -\frac{1}{V} \left(\frac{\partial}{\partial P} \frac{NRT}{P} \right)_T = \frac{NRT}{VP^2} = \frac{NRT}{VP} \frac{1}{P} = \frac{1}{P}$$

simple for ideal gas

8. Intensive v.s. extensive properties

- Intensive: Can be defined at any point in a system e.g. temperature, density, composition, pressure, compressibility
- Extensive: Depends on extent of system, scales with system size e.g. energy, volume, moles, entropy, mass

9. Phases of matter

• Phase = region of space within which all (intensive) properties are uniform

e.g. solid sucrose, pure water, sugar, sugar water, pure copper, pure zinc, brass

• Phase boundaries classified similarly to system boundaries e.g. sugar + sugar water.

exchanging volume, heat energy and mass across the phase boundary 3.020 Thermodynamics of Materials Spring 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.