3.020 Lecture 4

Prof. Rafael Jaramillo
1 Heat engines, abstracted

- Cyclic machine
- Returns to same state after each cycle

- Thermal reservoirs
- Maintained at hot (T_H) and cold (T_c) throughout

- Total work and heat
- Work in and out
- Heat in and out
- Efficiency
 \[\eta = \frac{W_{NET}}{Q_{IN}} \]

- Typical representation:
 "Heat engine with efficiency η operating between T_H and $T_c"$

- Each cycle:
 Q_{IN} absorbed from T_H
 Q_{OUT} "rejected" to T_c
 W_{OUT} performed

Question: What is $Q_{IN} - W_{Out} - Q_{OUT}$?
2 Calculating a cyclic process

- Work and heat are process variables
- Thermodynamics doesn’t describe real-world process

What to do??

⇒ Describe hypothetical process for which system remains in equilibrium at all times.
- can use state variables and equations of state (if available)
- in practice, such a cycle would take infinite time.

\[\text{Power} = \frac{\text{Work}}{\text{Cyclic time period}} \rightarrow 0 \]

3 Carnot cycle with an ideal gas

(I) Isothermal expansion at \(T_H \)
(II) Adiabatic expansion to \(T_c \)
(III) Isothermal compression at \(T_c \)
(IV) Adiabatic compression to \(T_H \)

Note: \(W_{out} \) is the area enclosed by the cycle
(true of any cycle, not just Carnot)
3.1 Isotherms

\[PV = nRT \]
\[PdV + VdP = 0 \]
\[dV = -\frac{V}{P}dP = -\frac{nRT}{P^2}dP \]
\[PdV = -\frac{nRT}{P}dP \]

\[\Rightarrow \int \delta W = +\int dP \frac{nRT}{P} = +nRT \ln \left(\frac{P_{\text{final}}}{P_{\text{initial}}} \right) = +nRT \ln \left(\frac{V_{\text{initial}}}{V_{\text{final}}} \right) \]

Sanity Check: expansion does work on surroundings, so \(\int \delta W < 0 \)

\[\frac{V_i}{V_f} < 1, \quad \ln \left(\frac{V_i}{V_f} \right) < 0 \quad \checkmark \]

3.2 Isotherms, continued

⇒ For ideal gas, internal energy \(U \) is a function of \(T \) only, \(dU = nC_vdT \)

\[dU = 0 \text{ for isothermal process} \]
\[\delta Q = -\delta W \]
\[Q = -W \]

3.3 Adiabats

\[\delta Q = 0, \delta W = -PdW \quad - \text{how to calculate?} \]

- For ideal gas:

\[dU = \delta W + \delta Q = -PdV = nC_vdT \]
\[W = nC_v(T_{\text{final}} - T_{\text{initial}}) \]

- Adiabatic curves are described by:

\[TV^\gamma = \text{const}, \quad \frac{P_{\text{final}}}{P_{\text{initial}}} = \left(\frac{V_{\text{initial}}}{V_{\text{final}}} \right)^\gamma, \quad \gamma = \frac{C_p}{C_v} \]

Deltoff ch. 4, Lectures 6-7
• Adiabats are steeper than isotherms on (P,V) plane because γ > 1

Q: Why is γ > 1?

3.4 Adding all contributions to W and Q

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(nRT_H \ln \left(\frac{V_1}{V_2} \right))</td>
<td>(-nRT_H \ln \left(\frac{V_1}{V_2} \right))</td>
</tr>
<tr>
<td>II</td>
<td>(nC_v(T_C - T_H))</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>(nRT_C \ln \left(\frac{V_3}{V_4} \right))</td>
<td>(-nRT_C \ln \left(\frac{V_3}{V_4} \right))</td>
</tr>
<tr>
<td>IV</td>
<td>(nC_v(T_H - T_C))</td>
<td></td>
</tr>
</tbody>
</table>

3.5 Calculating the Carnot efficiency

\[W_{TOT} = -\left(nRT_H \ln \left(\frac{V_1}{V_2} \right) + nRT_C \ln \left(\frac{V_3}{V_4} \right) \right) \]

total work done by the engine

\[Q_{IN} = -nRT_H \ln \left(\frac{V_1}{V_2} \right) \]

heat absorbed at \(T_H \)

\[\eta = \frac{W_{TOT}}{Q_{IN}} = 1 + \frac{T_c \ln(V_3/V_4)}{T_H \ln(V_1/V_2)} \]

Using property of adiabat \(TV^{\gamma-1} = \text{const} \) can show that \(V_3/V_4 = (V_1/V_2)^{-1} \)

\[\eta_{\text{carnot}} = 1 - \frac{T_C}{T_H} \]

3.6 Considering heat transfers

<table>
<thead>
<tr>
<th></th>
<th>heat absorbed</th>
<th>heat released</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnot engine</td>
<td>(Q_{IN} = nRT_H \ln V)</td>
<td>(Q_{OUT,C} = nRT_C \ln V)</td>
</tr>
<tr>
<td>less efficient engine that burns the same quantity of fuel</td>
<td>(Q_{IN} = nRT_H \ln V)</td>
<td>(Q_{OUT} > Q_{OUT,C})</td>
</tr>
</tbody>
</table>

required by conservation of energy if \(W_{TOT} < W_{TOT,C} \)
3.7 Considering quantity $\delta Q/T$

- Quantity: $\oint \frac{\delta Q}{T} \rightarrow$ integral around the cycle

- Carnot: $\int \frac{\delta Q}{T} = \frac{nRT_H \ln V}{T_H} - \frac{nRT_C \ln V}{T_C} = 0$

- Less efficient: $\oint \frac{\delta Q}{T} = \frac{nRT_H \ln V}{T_H} - \frac{Q_{OUT}}{T_C} < 0$. \(\text{because } Q_{OUT} > Q_{OUT,C}\)

\Rightarrow We will soon see that this is related to entropy generation by the less efficient cycle
3.020 Thermodynamics of Materials
Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.