3.020 Lecture 6

Prof. Rafael Jaramillo

1 Thermodynamic potentials and equilibrium

1. For fixed U, the entropy S is maximized at equilibrium.
2. For fixed S and V, the internal energy U is minimized at equilibrium.
3. For fixed S and P, the enthalpy $H=U+P V$ is minimized at equilibrium.
4. For fixed T and V, the Helmholtz free energy $F=U-T S$ is minimized at equilibrium.
5. For fixed T and P, the Gibbs free energy $G=U-T S+P V$ is minimized at equilibrium

2 Math note (aka fun with multi)

State functions and independent variables

- In 3.020 , state functions are functions of most 3 independent variables.

$$
\begin{aligned}
& \underbrace{\text { e.g. }} d U=T d S-P d V+\mu d N \\
& \text { implies } U=U(S, V, N)
\end{aligned}
$$

We may never know this state function for most materials but it's still a useful concept.

- Thermodynamic potentials have "natural" independent variables

$$
\begin{gathered}
S=S(U, V) \quad F=F(T, V) \\
U=U(S, V) \quad G=G(T, P) \\
H=H(S, P)
\end{gathered}
$$

not writing "N" dependence to be compact

- Thermodynamic potentials are related by a change of variables via Legendre transforms

$$
\underbrace{U(S, V)} \Longleftrightarrow H(S, P)
$$

exchanging V for $\mathrm{P}, \quad H=U+P V$
beyond scope of 3.020

3 Coefficient relations and independent variables

$$
\text { e.g. } d U=T d S-P d V+\mu_{i} d N_{i}
$$

coefficients: $T, P, \mu_{i} \quad$ independent variables: S, V, N_{i}
$\underbrace{\frac{\partial U}{\partial S}{ }_{V, N_{i}}=T, \quad \overline{\partial U}_{S, N_{i}}=-P, \quad \overline{\partial U}_{\partial N_{i}}=\mu_{S, V, N_{j \neq i}}}_{\text {coefficient relations }}$

4 General strategy for deriving thermodynamic relations

Problem: Given dependent state variable Z and independent state variables (X, Y), calculate ΔZ for a given process.
e.g. Find ΔV for a process involving a pressure change at fixed entropy (i.e. a reversible adiabatic process)

$$
d V=\underbrace{X}_{\text {find these coefficients }} d P+\underbrace{Y} d S
$$

1. Write exact differential

$$
d V=\frac{\partial V}{\partial P}_{S} d P+\frac{\partial V}{\partial S}_{P} d S
$$

Using X and Y as shorthand for unknown partial derivatives

2. Use DeHoff Table 4.5 to express $d P, d S$ in terms of $d P, d T$

$$
\begin{gathered}
d P=\underbrace{}_{0} d T+\underbrace{}_{1} d P \text { trivial } \\
d S=\frac{C_{P}}{T} d T-V \alpha d P \\
d V=X d P+Y\left(\frac{C_{P}}{T} d T-V \alpha d P\right)
\end{gathered}
$$

3. Collect terms

$$
d V=Y \frac{C_{P}}{T} d T+(X-Y V \alpha) d P
$$

4. Compare to known coefficients

$$
d V=V \alpha d T-V \beta d P \quad \text { 'from Table 4.5' }
$$

and equate

$$
\begin{gathered}
\frac{\partial V}{\partial T_{P}}=Y \frac{C_{P}}{T}=V \alpha \\
{\frac{\partial V}{\partial T_{P}}}_{P}=X-Y V \alpha=-V \beta
\end{gathered}
$$

5. Solve for unknowns X, Y

$$
\begin{gathered}
Y=\frac{V \alpha T}{C_{P}}, \quad X=\frac{V^{2} \alpha^{2} T}{C_{P}}-V \beta \\
\Longrightarrow \quad d V=\underbrace{\left(\frac{V^{2} \alpha^{2} T}{C_{P}}-V \beta\right) d P}+\frac{V \alpha T}{C_{P}} d S
\end{gathered}
$$

integrate this to find change ΔV for pressure change at fixed entropy
for ideal gas, simplifies to

$$
X=-\frac{V}{P} \frac{C_{P}-R}{C_{P}}
$$

$$
\text { leading to } \quad \frac{P_{\text {final }}}{P_{\text {initial }}}=\left(\frac{V_{\text {initial }}}{V_{\text {final }}}\right)^{\gamma}, \quad \gamma=\frac{C_{P}}{C_{V}}
$$

5 Equilibrium at fixed T and P

$$
\begin{aligned}
G & =U+P V-T S \quad \text { is minimized } \\
d G & =d U+P d V+V d P-T d S-S d T \quad \leftarrow \text { chain rule } \\
& =T d S-P d V+\mu_{i} d N_{i}+P d V+V d P-T d S-S d T \quad \leftarrow \text { combined statement } \\
& =-S d T+V d P+\mu_{i} d N_{i}
\end{aligned}
$$

- independent variables: T, P, N_{i}
- coefficients: $-S, V, \mu_{i}$
- by inspection:

$$
\begin{aligned}
-S & =\frac{\partial G}{\partial T}_{P, N_{i}} \\
V & =\frac{\partial G}{\partial P}_{T, N_{i}} \\
\mu_{i} & ={\frac{\partial G}{\partial N_{i}}}_{T, P, N_{j \neq i}}
\end{aligned}
$$

- at fixed T and $P, d T=0$ and $d P=0$, and equilibrium condition reduces to

$$
d G=-S \underbrace{d T}_{0}+V \underbrace{d P}_{0}+\mu_{i} d N_{i}=0
$$

because G is minimized at equilibrium

- for multicomponent, heterogeneous systems, this becomes $d G=\mu_{i}^{k} d N_{i}^{k}$ superscript $\mathrm{k}=$ phase label subscript $\mathrm{i}=$ component label
- evaluating equilibrium requires knowing how components can exchange between phases, and the effect on the $\mu_{i}^{k} \mathrm{~s}$
- About independent ("natural") variables
- If a variable is regulated, a.k.a held constant, then it should be independent
- Identifying independent \& dependent variables from problem statements is KEY to success at thermodynamics e.g. "... at fixed pressure..." \longrightarrow choose P as one independent variable
e.g. "...adiabatic process..." \longrightarrow choose S as one independent variable
e.g. "...with temperature held constant..." \longrightarrow choose T as one independent variable
etc.

MIT OpenCourseWare
https://ocw.mit.edu/
3.020 Thermodynamics of Materials

Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

MIT OpenCourseWare
https://ocw.mit.edu/

3.020 Thermodynamics of Materials

Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

