3.020 Lecture 7

Prof. Rafael Jaramillo

1 Ideal gas processes

1.1 Reversible adiabatic expansion

Q. What to choose for independent variables ?

- $\delta Q=0$, reversible process $\longrightarrow d S=0 \longrightarrow$ use S
- expansion \longrightarrow pressure/volume change \longrightarrow use P

Find equation of state $T(S, P)$

- Use general strategy to find differential form

$$
\begin{aligned}
d T & =M d S+N d P \\
& =M\left(\frac{C_{P}}{T} d T-V \alpha d P\right)+N d P \\
& =M \frac{C_{P}}{T} d T+(N-M V \alpha) d P
\end{aligned}
$$

By inspection, $\quad M \frac{C_{P}}{T}=1 \quad \longrightarrow M=\frac{T}{C_{P}}$

$$
N-M V \alpha=0 \longrightarrow N=\frac{T V \alpha}{C_{P}}
$$

- Use properties of ideal gases

$$
\begin{gathered}
V=\frac{R T}{P}, \quad \alpha=\frac{1}{T}, \quad C_{P}=5 / 2 R \quad \leftarrow \text { for monoatomic gas } \\
d T_{S}=\frac{T V \alpha}{C_{P}} d P=\frac{T R T}{C_{P} T P} d P=\frac{R}{C_{P}} \frac{T}{P} d P=\frac{2}{5} \frac{T}{P} d P
\end{gathered}
$$

- Separate variables and integrate

$$
\frac{d T}{T}=\frac{R}{C_{P}} \frac{d P}{P} \quad \longrightarrow \quad \frac{T_{f}}{T_{i}}=\left(\frac{P_{f}}{P_{i}}\right)^{R / C_{P}}
$$

- Alternative forms of adiabatic, reversible expansion.

$$
\begin{aligned}
P V^{r} & =\text { const. } \quad, \gamma=\frac{C_{P}}{C_{V}} \\
T V^{\gamma-1} & =\text { const. } \\
\frac{P_{f}}{P_{i}} & =\left(\frac{V_{i}}{V_{f}}\right)^{\gamma}
\end{aligned}
$$

e.g. compression stroke of internal combustion engine

- Alternative derivation of adiabatic, reversible expansion of ideal gas

$$
\delta Q=0 \quad \longrightarrow d U=\delta W=-P d V
$$

- from last time we know that $d U_{T}=0 \longrightarrow \quad d U=C_{V} d T$ for I.G.

$$
C_{V} d T=-P d V=-\frac{R T}{V} d V
$$

- separate and integrate

$$
\frac{T_{f}}{T_{i}}=\left(\frac{V_{i}}{V_{f}}\right)^{R / C_{v}} \quad \longrightarrow \quad T V^{R / C_{V}}=\text { const } .
$$

1.2 Isothermal expansion

Q. What to use for independent variables ?

- Isothermal, $d T=0 \quad \longrightarrow$ use T
- Expansion \longrightarrow use $P(0-V)$

Find equations of state $G(T, P)$

- Use differential form

$$
\begin{gathered}
d G=-S \underbrace{d T}_{0}+V d P=\frac{R T}{P} d P \\
G_{f}-G_{i}=\Delta G=R T \ln \left(\frac{P_{f}}{P_{i}}\right)
\end{gathered}
$$

1.3 Adiabatic free expansion

withdraw piston instantaneously

gas will spontaneously (freely) expand into the free volume
irreversibly

- Work and heat during free expansion

$$
\begin{gathered}
\text { Work }=-\int d V P=0 \quad \longleftarrow \text { gas expanding into vacuum } \\
\text { Heat }=0 \longleftarrow \text { adibatic process } \\
\Delta U=W+Q=0 \\
\text { Implies } d T=0 \quad \text { for ideal gas }
\end{gathered}
$$

- Adiabatic free expansion is spontaneous, so $\Delta S>0$
Q. How to calculate ΔS ?
A. Find differential form $d S=\ldots$ and integrate
Q. What to use for independent variables ?
- Isothermal, $d T=0 \quad \longrightarrow \quad$ use $\quad T$
- Expansion \longrightarrow use V (or P)

MIT OpenCourseWare
https://ocw.mit.edu/

3.020 Thermodynamics of Materials

Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

