3.020 Lecture 8

Prof. Rafael Jaramillo

1 Equilibrium in a unary, heterogeneous system

- System with 1 component, 2 phases
- System isolated from surroundings
- Boundary is
- rigid
- closed
- athermal
internal $\alpha-\beta$ boundary is the opposite
Goal : Evaluate condition for equilibrium $d S=0$
- Work expression for $d S$
- For phase α

$$
\begin{aligned}
& d U^{\alpha}=T^{\alpha} d S^{\alpha}-P^{\alpha} d V^{\alpha}+\mu^{\alpha} d N^{\alpha} \\
& d S^{\alpha}=\frac{1}{T^{\alpha}} d U^{\alpha}+\frac{P^{\alpha}}{T^{\alpha}} d V^{\alpha}-\frac{\mu^{\alpha}}{T^{\alpha}} d N^{\alpha}
\end{aligned}
$$

- Likewise,

$$
d S^{\beta}=\frac{1}{T^{\beta}} d U^{\beta}+\frac{P^{\beta}}{T^{\beta}} d V^{\beta}-\frac{\mu^{\beta}}{T^{\beta}} d N^{\beta}
$$

superscript : phase labels

- Entropy is extensive, so $d S=d S^{\alpha}+d S^{\beta}$

$$
d S=\frac{1}{T^{\alpha}} d U^{\alpha}+\frac{P^{\alpha}}{T^{\alpha}} d V^{\alpha}-\frac{\mu^{\alpha}}{T^{\alpha}} d N^{\alpha}+\frac{1}{T^{\beta}} d U^{\beta}+\frac{P^{\beta}}{T^{\beta}} d V^{\beta}-\frac{\mu^{\beta}}{T^{\beta}} d N^{\beta}
$$

$-\longrightarrow 6$ variables $\left(U^{i}, V^{i}, N^{i}\right) \quad$ where $i=\alpha, \beta$
$-\longrightarrow 6$ coefficients

- Case of unconstrained optimization: $d S=0$ requires that all 6 coefficients $=0$ (not realistic)
- Add physical constraints to define constrained optimization problem
- Constraints
(1) Conservation of energy: $d U^{\alpha}=-d U^{\beta} \quad$ Bounday allows excharje of
(2) Conservation of volume: $d V^{\alpha}=-d V^{\beta}$
(3) Conservation of mass: $d N^{\alpha}=-d N^{\beta}$

Simplifies equilibrium condition $d S=0$ to 3 inde-
 pendent parameters, with 3 coefficients $=0$

- Constrained optimization

$$
d S=\left(\frac{1}{T^{\alpha}}-\frac{1}{T^{\beta}}\right) d V^{\alpha}+\left(\frac{P^{\alpha}}{T^{\alpha}}-\frac{P^{\beta}}{T^{\beta}}\right) d V^{\alpha}-\left(\frac{\mu^{\alpha}}{T^{\alpha}}-\frac{\mu^{\beta}}{T^{\beta}}\right) d N^{\alpha}=0
$$

- Set coefficients $=0$

$$
\begin{aligned}
& \frac{1}{T^{\alpha}}-\frac{1}{T^{\beta}}=0 \quad \Longrightarrow \quad T^{\alpha}=T^{\beta} \quad \longrightarrow \quad \text { thermal equilibrium } \\
& \frac{P^{\alpha}}{T^{\alpha}}-\frac{P^{\beta}}{T^{\beta}}=0 \quad \Longrightarrow \quad P^{\alpha}=P^{\beta} \quad \longrightarrow \quad \text { mechanical equilibrium } \\
& \frac{\mu^{\alpha}}{T^{\alpha}}-\frac{\mu^{\beta}}{T^{\beta}}=0 \quad \Longrightarrow \quad \mu^{\alpha}=\mu^{\beta} \quad \longrightarrow \quad \text { chemical equilibrium }
\end{aligned}
$$

thermodynamic equilibrium conditions for 2-phase coexistence

- Assumption to this point
- Intensive parameters (T, P, μ) are uniform inside each phase
- Boundary has no substance, so it doesn't contribute to total extensive quantities (U, V, S, N)
- Spatial distribution doesn't matter
- Bounding conditions affect equilibrium

α, β phases separated by boundary that is
- rigid \longrightarrow no volume exchange
- closed \longrightarrow no mass exchange
- diathermal \longrightarrow yes thermal exhcange

$$
\begin{gathered}
d S=\left(\frac{1}{T^{\alpha}}-\frac{1}{T^{\beta}}\right)=0 \quad \longleftarrow \quad \text { no } \mathbf{d} \mathbf{V}, \mathbf{d N} \text { terms } \\
T^{\alpha}=T^{\beta} \quad \text { at equilibrium }
\end{gathered}
$$

Thermal equilibrium, but not mechanical or chemical

2 Entropy generation during spontaneous processes

$$
d S=\left(\frac{1}{T^{\alpha}}-\frac{1}{T^{\beta}}\right) d U^{\alpha}+\left(\frac{P^{\alpha}}{T^{\alpha}}-\frac{P^{\beta}}{T^{\beta}}\right) d V^{\alpha}-\left(\frac{\mu^{\alpha}}{T^{\alpha}}-\frac{\mu^{\beta}}{T^{\beta}}\right) d N^{\alpha}=0
$$

- Consider $T^{\alpha}>T^{\beta}, \quad \frac{1}{T^{\alpha}}<\frac{1}{T^{\beta}}$

Hotter phase (α) will spontaneously heat the colder phase (β)

$$
d U^{\alpha}<0, \quad \longrightarrow \quad d S>0
$$

Entropy generated during heat energy transfer from hot to cold matter

- Consider $T^{\alpha}=T^{\beta}, \quad P^{\alpha}>P^{\beta}, \quad \frac{P^{\alpha}}{T^{\alpha}}-\frac{P^{\beta}}{T^{\beta}}>0$

Higher pressure phase (α) will spontaneously expand into the lowerpressure phase (β)

$$
d V^{\alpha}>0 \quad \Longrightarrow \quad d S>0
$$

- Consider $T^{\alpha}=T^{\beta}, \quad \mu^{\alpha}>\mu^{\beta}, \quad \frac{\mu^{\alpha}}{T^{\alpha}}-\frac{\mu^{\beta}}{T^{\beta}}>0$

Matter will spontaneously transform from phase with higher chemical potential (α) into phase with lower chemical potential (β)

$$
d N^{\alpha}<0, \quad \Longrightarrow \quad d S>0
$$

MIT OpenCourseWare
https://ocw.mit.edu/

3.020 Thermodynamics of Materials

Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

