3.020 Lecture 8

Prof. Rafael Jaramillo
1 Equilibrium in a unary, heterogeneous system

- System with 1 component, 2 phases
- System isolated from surroundings
- Boundary is
 - rigid
 - closed
 - athermal
 \textbf{internal }\alpha-\beta\textbf{ boundary is the opposite}

Goal: Evaluate condition for equilibrium \(dS = 0 \)

- Work expression for \(dS \)
 - For phase \(\alpha \)
 \[dU^\alpha = T^\alpha dS^\alpha - P^\alpha dV^\alpha + \mu^\alpha dN^\alpha \]
 \[dS^\alpha = \frac{1}{T^\alpha} dU^\alpha + \frac{P^\alpha}{T^\alpha} dV^\alpha - \frac{\mu^\alpha}{T^\alpha} dN^\alpha \]
 - Likewise,
 \[dS^\beta = \frac{1}{T^\beta} dU^\beta + \frac{P^\beta}{T^\beta} dV^\beta - \frac{\mu^\beta}{T^\beta} dN^\beta \]

- Entropy is extensive, so \(dS = dS^\alpha + dS^\beta \)
 \[dS = \frac{1}{T^\alpha} dU^\alpha + \frac{P^\alpha}{T^\alpha} dV^\alpha - \frac{\mu^\alpha}{T^\alpha} dN^\alpha + \frac{1}{T^\beta} dU^\beta + \frac{P^\beta}{T^\beta} dV^\beta - \frac{\mu^\beta}{T^\beta} dN^\beta \]
 - \(\rightarrow 6 \text{ variables } (U^i, V^i, N^i) \) where \(i = \alpha, \beta \)
 - \(\rightarrow 6 \text{ coefficients} \)

- Case of unconstrained optimization: \(dS = 0 \) requires that all 6 coefficients = 0 (not realistic)
• Add physical constraints to define constrained optimization problem

• Constraints

(1) Conservation of energy: \(dU^\alpha = -dU^\beta\)
(2) Conservation of volume: \(dV^\alpha = -dV^\beta\)
(3) Conservation of mass: \(dN^\alpha = -dN^\beta\)

Simplifies equilibrium condition \(dS = 0\) to 3 independent parameters, with 3 coefficients = 0

• Constrained optimization

\[dS = \left(\frac{1}{T^\alpha} - \frac{1}{T^\beta}\right)dV^\alpha + \left(\frac{P^\alpha}{T^\alpha} - \frac{P^\beta}{T^\beta}\right)dV^\alpha - \left(\frac{\mu^\alpha}{T^\alpha} - \frac{\mu^\beta}{T^\beta}\right)dN^\alpha = 0\]

• Set coefficients = 0

\[\frac{1}{T^\alpha} - \frac{1}{T^\beta} = 0 \quad \Rightarrow \quad T^\alpha = T^\beta \quad \rightarrow \quad \text{thermal equilibrium}\]

\[\frac{P^\alpha}{T^\alpha} - \frac{P^\beta}{T^\beta} = 0 \quad \Rightarrow \quad P^\alpha = P^\beta \quad \rightarrow \quad \text{mechanical equilibrium}\]

\[\frac{\mu^\alpha}{T^\alpha} - \frac{\mu^\beta}{T^\beta} = 0 \quad \Rightarrow \quad \mu^\alpha = \mu^\beta \quad \rightarrow \quad \text{chemical equilibrium}\]

thermodynamic equilibrium conditions for 2-phase coexistence

• Assumption to this point

 – Intensive parameters \((T, P, \mu)\) are uniform inside each phase
 – Boundary has no substance, so it doesn’t contribute to total extensive quantities \((U, V, S, N)\)
 – Spatial distribution doesn’t matter

• Bounding conditions affect equilibrium
\(\alpha, \beta \) phases separated by boundary that is

- rigid \(\rightarrow \) no volume exchange
- closed \(\rightarrow \) no mass exchange
- diathermal \(\rightarrow \) yes thermal exchange

\[
dS = \left(\frac{1}{T_\alpha} - \frac{1}{T_\beta} \right) = 0 \quad \leftarrow \quad \text{no } dV, \text{ dN terms}
\]

\(T_\alpha = T_\beta \) at equilibrium

Thermal equilibrium, but not mechanical or chemical

2 Entropy generation during spontaneous processes

\[
dS = \left(\frac{1}{T_\alpha} - \frac{1}{T_\beta} \right)dU^\alpha + \left(\frac{P_\alpha}{T_\alpha} - \frac{P_\beta}{T_\beta} \right)dV^\alpha - \left(\frac{\mu_\alpha}{T_\alpha} - \frac{\mu_\beta}{T_\beta} \right)dN^\alpha = 0
\]

- Consider \(T_\alpha > T_\beta, \quad \frac{1}{T_\alpha} < \frac{1}{T_\beta} \)

 Hotter phase (\(\alpha \)) will spontaneously heat the colder phase (\(\beta \))

 \(dU^\alpha < 0, \quad \rightarrow \quad dS > 0 \)

Entropy generated during heat energy transfer from hot to cold matter

- Consider \(T_\alpha = T_\beta, \quad P_\alpha > P_\beta, \quad \frac{P_\alpha}{T_\alpha} - \frac{P_\beta}{T_\beta} > 0 \)

 Higher pressure phase (\(\alpha \)) will spontaneously expand into the lower-pressure phase (\(\beta \))

 \(dV^\alpha > 0 \quad \implies \quad dS > 0 \)

- Consider \(T_\alpha = T_\beta, \quad \mu_\alpha > \mu_\beta, \quad \frac{\mu_\alpha}{T_\alpha} - \frac{\mu_\beta}{T_\beta} > 0 \)

 Matter will spontaneously transform from phase with higher chemical potential (\(\alpha \)) into phase with lower chemical potential (\(\beta \))

 \(dN^\alpha < 0, \quad \implies \quad dS > 0 \)
3.020 Thermodynamics of Materials
Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.