3.020 Lecture 11

Prof. Rafael Jaramillo

1 Clausius-Clapeyron equation

$$
\begin{aligned}
d \mu^{\alpha} & =-S^{\alpha} d T+V^{\alpha} d P \\
d \mu^{\beta} & =-S^{\beta} d T+V^{\beta} d P \\
d \mu^{\alpha} & =d \mu^{\beta} \\
\Longrightarrow \quad(\underbrace{S^{\alpha}-S^{\beta}}_{\Delta S^{\beta \rightarrow \alpha}}) d T & =(\underbrace{V^{\alpha}-V^{\beta}}_{\Delta V^{\beta \rightarrow \alpha}}) d P
\end{aligned}
$$

$$
\frac{d P}{d T}=\frac{\Delta S}{\Delta V}=\frac{\Delta H}{T \Delta V}
$$

Clausius-Clapeyron
for isothermal transformation $\Delta S=\frac{\Delta H}{T}$

2 Using the C-C equation: Vapor pressure

- On coexistence line, vapor pressure is saturated at $P_{S A T}$
- If excess vapor pressure is added, vapor will condense to reapproach $P_{S A T}$
- If vapor pressure is reduced, solid will sublime to reapproach $P_{S A T}$
- Example of Le Chatelier principle
- Calculate $P_{S A T}$ by integrating the CC equation

$$
d P \Delta V=d T \frac{\Delta H}{T} \quad \Longrightarrow \quad \text { need: } \quad(\Delta H(T, P), \Delta V(T, P))
$$

- Transformation quantities can be found fro standard values by integrating in the (T, P) plane

P

- Calculating $\Delta H(T, P)$

$$
\begin{gathered}
d H=C_{P} d T+V(1-T \alpha) d P \\
\Delta H(T, P)=\Delta H\left(T_{0}, P_{0}\right)+\int_{T_{0}}^{T} d \Delta H_{P}+\int_{P_{0}}^{P} d \Delta H_{T} \\
=\Delta H\left(T_{0}, P_{0}\right)+\int_{T_{0}}^{T} d T^{\prime} \Delta C_{p}+\int_{P_{0}}^{P} d P^{\prime} \Delta(V(1-T \alpha))
\end{gathered}
$$

- Calculating $\Delta V(T, P)$

$$
\begin{gathered}
d V=V \alpha d T-V \beta d P \\
\Delta V=\Delta V\left(T_{0}, P_{0}\right)+\int_{T_{0}}^{T} d \Delta V_{P}+\int_{P_{0}}^{P} d \Delta V_{T} \\
=\Delta V\left(T_{0}, P_{0}\right)+\int_{T_{0}}^{T} d T^{\prime} \Delta(V \alpha)+\int_{P_{0}}^{P} d P^{\prime} \Delta(-V \beta)
\end{gathered}
$$

- In general this requires knowing $C_{P}(T, P), V^{\prime}(T, P), \alpha(T, P), \beta(T, P)$ for both phases
- For vaporization of a condensed phase over a limited temp. range, can simplify using 3 assumptions :

1. $\Delta H \approx$ const.
2. $V^{g} \gg V^{S}, V^{l} \quad \Longrightarrow \quad|\Delta V| \approx V^{g}$
3. Gas behaves ideally

3 Gibbs phase rule: how many phases can coexist at equilibrium ?

\# deg of freedom = \# variables - \# independent constraints

$\mathrm{DoF}=2 \mathrm{Ph}-3(\mathrm{Ph}-1)=3-\mathrm{Ph}$, Gibbs phase rule for nary systems

- 1 phase region \longrightarrow DoF $=2$, e.g. (T, P) plane
- 2 phase region $\longrightarrow \mathrm{DoF}=1$, e.g. coexistence line
- 3 phase region $\longrightarrow \mathrm{DoF}=0$, e.g. triple point

MIT OpenCourseWare
https://ocw.mit.edu/

3.020 Thermodynamics of Materials

Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

