3.020 Lecture 27

Prof. Rafael Jaramillo
1 Microstates and macrostates

- Microstate (µstate): Description of the state of every molecule in a system
e.g. O(10^{23}) pairs of position and velocity (r, v)

- Macrostate: Description of system on macroscopic length scale, averaging over microscopic (e.g. molecular) processes.
e.g. P, T, N

- Simple example, after DeHoff
 4 particles: a, b, c, d
 2 possible states for each particles: 1, 2

 ![Diagram showing all possible microstates and macrostates]

- General case: n particles distributed over r states
 \[\Omega = \# \text{ of microstates in the macrostate defined as :} \]
 - \(n_1 \) particles in state 1
 - \(n_2 \) particles in state 2
 - \(n_i \) describes the macrostate
\[\Omega = \frac{n!}{n_1! \, n_2! \, n_3! \ldots \, n_r!} \]

- For large systems:

\[n \gg 1, \quad r \gg n \]

\(\Omega \) is very sharply peaked around some macrostate

- Define (i.e. count) macrostates for \(n \) particles in \(r \) states or “boxes”

<table>
<thead>
<tr>
<th>index</th>
<th>({n_i})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(n, 0, 0, 0, 0, \ldots)</td>
</tr>
<tr>
<td>2</td>
<td>(0, n, 0, 0, 0, \ldots)</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

\((r) \) of these

\((r) \) of these

\(\binom{r}{\min(r, n)} \)

Challenge: Work this out!
• We now know how to define macrostates \(n_i \) and count them, and we now how to count microstates for each macrostate \(n_i \).

\[\downarrow \]

Can plot distribution \(\log \Omega \).

2 Ergodic principle: All microstates that are compatible with constraints are equally likely

• Ensembles of \(\mu \) states that all satisfy given constraints
• Time average = ensemble average
• Frequentist approach to probability and statistics

• Likelihood of finding a given macrostate is proportional to its \# of microstates

\[
\rho_j = \frac{\Omega_j}{\sum_k \Omega_k}
\]

\(\rho_j \): prob. of finding macrostate \(j \)
\(\Omega_j \): \# of microstates in \(j \)
\(\sum_k \Omega_k \): total \# of microstates possible within constraints \(Q \). For what types of cases might the ergodic principle break down?
3.020 Thermodynamics of Materials
Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.