3.020 Lecture 28

Prof. Rafael Jaramillo

1 Boltzmann hypothesis

Preamble: Ω describes the stability of a macrostate.
The state with maximum Ω will appear to be the most stable in time.

Hypothesis: $S=f(\Omega)$
Entropy is a monotonically rising function of Ω

- Consider two isolated systems

$$
f(\Omega)=S=k_{B} \ln \Omega
$$

2 Configurational entropy

\# ways to put n molecules into r boxes. boxes sufficiently small such that no box has more than 1 molecule

$$
\Omega=\binom{r}{n}=\frac{r!}{r!(r-n)!}
$$

- Let $r=\frac{v^{\prime}}{b}$. V^{\prime} : total volume; $b:$ voxel, take to be volume of a molecule
- Can show that $\ln \binom{r}{n} \approx n \ln r$ for $r \gg n$
- Now let system expand from V^{\prime} to $2 V^{\prime}$

$$
\Delta S^{\prime}=k_{B} n\left(\ln \left(\frac{2 V^{\prime}}{b}\right)-\ln \frac{V^{\prime}}{b}\right)=k_{B} n \ln \left(\frac{2 V^{\prime}}{V^{\prime}}\right)=k_{B} n \ln 2
$$

- Same as classical result for isothermal expansion of ideal gas
- $k_{B} n=R$ for $n=N_{A}$

3 Maximum entropy condition and the Boltzmann distribution

- Consider $n_{\text {TOT }}$ particles distributed among r states according to occupation numbers $n_{i}=n_{1}, n_{2}, \ldots, n_{r}$

$$
\begin{aligned}
S^{\prime} & =k_{B} \ln \left(\frac{n_{T O T}!}{\prod_{i} n_{i}!}\right) \\
& =k_{B}\left(n_{T O T} \ln n_{T O T}-n_{T O T}-\sum_{i} n_{i} \ln n_{i}+\sum_{i} n_{i}\right) \quad \leftarrow \text { Using Stirling's approx. } \\
& =k_{B}\left(n_{T O T} \ln n_{T O T}-\sum_{i} n_{i} \ln n_{i}\right) \quad \text { using } \quad \sum_{i} n_{i}=n_{T O T} \\
& =-k_{B} \sum_{i} n_{i} \ln \left(\frac{n_{i}}{n_{T O T}}\right)
\end{aligned}
$$

- The distribution of occupation numbers n_{i} is an unconstrained internal variable

- The maximum entropy condition $S=S_{M A X}$ requires that S is stationary w.r.t. all such unconstrained internal processes

$$
\begin{aligned}
d S^{\prime} & =-k_{B} \sum_{i}\left(\ln n_{i} d n_{i}+\frac{n_{i}}{n_{i}} d n_{i}-\ln n_{T O T} d n_{i}-\frac{n_{i}}{n_{T O T}} d n_{T O T}\right) \\
& =-k_{B} \sum_{i} \ln \left(\frac{n_{i}}{n_{T O T}}\right) d n_{i}
\end{aligned}
$$

- Isolation constraints
- let ϵ_{i} be the energy per particle in state $i \quad$ sys. impermeable

$$
\begin{array}{rlrlr}
U^{\prime} & =\sum_{i} \epsilon_{i} n_{i} & \longrightarrow \quad d U & =\sum_{i} \epsilon_{i} d n_{i}=0 & \text { conservation of energy } \\
n_{T O T} & =\sum_{i} n_{i} \quad \longrightarrow \quad d n_{T O T}=\sum_{i} d n_{i}=0 & \text { conservation of mass }
\end{array}
$$

Note: Conservation of volume connected to the $\epsilon_{i}^{\prime} s$ being constants

- Constrained optimization: Want to optimize S^{\prime} subject to constraints that $U^{\prime}, n_{T O T}$ are fixed

Method of Lagrange multipliers

$$
\begin{aligned}
\underline{\nabla} S^{\prime}+\alpha \underline{\nabla} n_{T O T}+\beta \underline{\nabla} U^{\prime} & =0 \quad \text { as in calculus textbooks } \\
d S+\alpha d n_{T O T}+\beta d U^{\prime} & =0
\end{aligned}
$$

$\alpha, \quad \beta$: Lagrange multipliers

- Substitute expressions for $d S, d U^{\prime}, d n_{T O T}$ and collect terms

$$
\begin{gathered}
\sum_{i} \underbrace{\left(-k_{B} \ln \left(\frac{n_{i}}{n_{T O T}}+\alpha+\beta \epsilon_{i}\right)\right)}_{\begin{array}{c}
\text { set each coefficient } \\
\text { to zero }
\end{array}} \underbrace{d n_{i}}_{\text {unconstrained }}=0 \\
\Downarrow \\
\quad-k_{B} \ln \left(\frac{n_{i}}{n_{T O T}}\right)+\alpha+\beta \epsilon_{i}=0 \\
\frac{n_{i}}{n_{T O T}}=e^{\alpha / k_{B}} e^{\beta \epsilon_{i} / k_{B}} \quad \text { for each } i=1,2, \ldots, r
\end{gathered}
$$

- Determine α by normalization

$$
\begin{aligned}
\sum_{i} \frac{n_{i}}{n_{T O T}} & =1 \\
e^{\alpha / k_{B}} & =\frac{1}{\sum_{i} e^{\beta \epsilon_{i} / k_{B}}}=\frac{1}{Q} \\
Q & =\sum_{i} e^{\beta \epsilon_{i} / k_{B}} \quad \text { partition function }
\end{aligned}
$$

- Partition function normalizes the distribution function

$$
\begin{gathered}
\frac{n_{i}}{n_{T O T}}=\frac{e^{\beta \epsilon_{i} / k_{B}}}{Q} \\
\frac{n_{i}}{n_{T O T}}=\frac{e^{\beta \epsilon_{i} / k_{B}}}{Q}
\end{gathered}
$$

The fraction of molecules in state i depends on energy ϵ_{i}

MIT OpenCourseWare
https://ocw.mit.edu/

3.020 Thermodynamics of Materials

Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

