3.020 Lecture 28

Prof. Rafael Jaramillo

1 Boltzmann hypothesis

Preamble: Ω describes the stability of a macrostate. The state with maximum Ω will appear to be the most stable in time.

Hypothesis: $S = f(\Omega)$ Entropy is a monotonically rising function of Ω

• Consider two isolated systems

2 Configurational entropy

ways to put *n* molecules into *r* boxes. boxes sufficiently small such that no box has more than 1 molecule

$$\Omega = \binom{r}{n} = \frac{r!}{r! \ (r-n)!}$$

- Let $r = \frac{V'}{b}$. V': total volume; b: voxel, take to be volume of a molecule
- Can show that $\ln \binom{r}{n} \approx n \ln r$ for r >> n

• Now let system expand from V^{\prime} to $2V^{\prime}$

$$\Delta S' = k_B \ n \ (\ln\left(\frac{2V'}{b}\right) - \ln\frac{V'}{b}) = k_B \ n \ln\left(\frac{2V'}{V'}\right) = k_B \ n \ \ln 2$$

- Same as classical result for isothermal expansion of ideal gas
- $k_B n = R$ for $n = N_A$

.

3 Maximum entropy condition and the Boltzmann distribution

• Consider n_{TOT} particles distributed among r states according to occupation numbers $n_i = n_1, n_2, \ldots, n_r$

$$S' = k_B \ln \left(\frac{n_{TOT} !}{\prod_i n_i !}\right)$$

= $k_B \left(n_{TOT} \ln n_{TOT} - n_{TOT} - \sum_i n_i \ln n_i + \sum_i n_i\right) \leftarrow$ Using Stirling's approx.
= $k_B \left(n_{TOT} \ln n_{TOT} - \sum_i n_i \ln n_i\right)$ using $\sum_i n_i = n_{TOT}$
= $-k_B \sum_i n_i \ln \left(\frac{n_i}{n_{TOT}}\right)$

• The distribution of occupation numbers n_i is an <u>unconstrained</u> internal variable

• The maximum entropy condition $S = S_{MAX}$ requires that S is stationary w.r.t. all such unconstrained internal processes

$$dS' = -k_B \sum_{i} \left(\ln n_i \, dn_i + \frac{n_i}{n_i} \, dn_i - \ln n_{TOT} \, dn_i - \frac{n_i}{n_{TOT}} \, dn_{TOT} \right)$$
$$= -k_B \sum_{i} \ln \left(\frac{n_i}{n_{TOT}} \right) \, dn_i$$

- Isolation constraints
 - let ϵ_i be the energy per particle in state i

$$U' = \sum_{i} \epsilon_{i} n_{i} \longrightarrow dU = \sum_{i} \epsilon_{i} dn_{i} = 0$$
 conservation of energy
 $n_{TOT} = \sum_{i} n_{i} \longrightarrow dn_{TOT} = \sum_{i} dn_{i} = 0$ conservation of mass

Note: Conservation of volume connected to the $\epsilon_{i}^{'}s$ being constants

- Constrained optimization: Want to optimize $S^{'}$ subject to constraints that $U^{'},\,n_{TOT}$ are fixed

Method of Lagrange multipliers

$$\underline{\nabla}S' + \alpha \underline{\nabla}n_{TOT} + \beta \ \underline{\nabla}U' = 0 \qquad \text{as in calculus textbooks} \\ dS + \alpha \ dn_{TOT} + \beta \ dU' = 0$$

- α , β : Lagrange multipliers
 - Substitute expressions for dS, dU', dn_{TOT} and collect terms

$$\sum_{i} \underbrace{\left(-k_{B} \ln \left(\frac{n_{i}}{n_{TOT}} + \alpha + \beta \epsilon_{i}\right)\right)}_{\text{set each coefficient}} \underbrace{dn_{i}}_{\text{unconstrained}} = 0$$

$$\downarrow \\ -k_{B} \ln \left(\frac{n_{i}}{n_{TOT}}\right) + \alpha + \beta \epsilon_{i} = 0$$

$$\frac{n_{i}}{n_{TOT}} = e^{\alpha/k_{B}} e^{\beta \epsilon_{i}/k_{B}} \quad \text{for each } i = 1, 2, \dots, r$$

• Determine α by normalization

$$\begin{split} \sum_{i} \frac{n_{i}}{n_{TOT}} &= 1 \\ e^{\alpha/k_{B}} &= \frac{1}{\sum_{i} e^{\beta \ \epsilon_{i}/k_{B}}} = \frac{1}{Q} \\ Q &= \sum_{i} e^{\beta \epsilon_{i}/k_{B}} \quad \text{ partition function} \end{split}$$

• Partition function normalizes the distribution function

$$\frac{n_i}{n_{TOT}} = \frac{e^{\beta \epsilon_i / k_B}}{Q}$$
$$\frac{n_i}{n_{TOT}} = \frac{e^{\beta \epsilon_i / k_B}}{Q}$$

The fraction of molecules in state i depends on energy ϵ_i

3.020 Thermodynamics of Materials Spring 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.