3.020 Lecture 32

Prof. Rafael Jaramillo

1 Reacting systems with condensed and gaseous phases

Example : Formation of SiC

2 Problem statement

- Place pieces of SiC and C into a vacuum oven
- Pull vacuum (to $P \approx 0 P a$), seal, and then heat to $1700^{\circ} \mathrm{C}$

You observe:

3 Reference data

- Saturation vapor pressures at $1700^{\circ} \mathrm{C}$ are

$$
\begin{aligned}
& P_{S i}^{S A T}\left(1700^{\circ} C\right)=4.4 P a \\
& P_{C}^{S A T}\left(1700^{\circ} C\right) \approx P_{S i C}^{S A T}\left(1700^{\circ} C\right) \approx 0 P a
\end{aligned}
$$

Question: What is the Gibbs free energy of formation of SiC at $1700^{\circ} \mathrm{C}$?

$$
\mathrm{Si}^{\alpha}+\mathrm{C}^{g} \stackrel{\Delta_{f} \mathrm{G}}{\longleftrightarrow} \mathrm{SiC}
$$

$$
\Delta_{f} G_{S i C}=G_{S i C}-G_{S i}^{o}-G_{c}^{o}
$$

For 1 mole of SiC

$$
\begin{aligned}
G^{\prime} & =\sum_{i} n_{i}^{S i C} \mu_{i}^{S i C}=\mu_{i}^{S i C}+\mu_{c}^{S i C} \\
& \left(n_{S i}^{S i C}=n_{C}^{S i C}=1\right) \\
\Delta_{f} G_{S i C} & =\mu_{S i}^{S i C}+\mu_{C}^{S i C}-\mu_{S i}^{o}-\mu_{C}^{o} \\
& =\underbrace{\left(\mu_{S i}^{S i C}-\mu_{S i}^{o}\right)}_{I I}+\underbrace{\left(\mu_{C}^{S i C}-\mu_{C}^{o}\right)}_{I}
\end{aligned}
$$

(I) How does the chemical potential of C differ from its pure, reference state?
It doesn't! Pure C is in equilibrium with SiC

$$
\mu_{i}^{S i C}=\mu_{C}^{g}=\mu_{C}^{o}
$$

$$
\begin{aligned}
& C \text { atoms exchanging freely between } \\
& \text { SiC and } C^{g} \text { via Vapor phase } \\
& \text { chemical equilibrium }
\end{aligned}
$$

(II) How does the chemical potential Si differ from its pure, reference state?

- If solid Si were present in the system, the partial pressure $P_{S i}$ would be equal to its saturation value $P_{S i}^{S A T}$
- Therefore $\mu_{S i}-\mu_{S i}^{o}=R T \ln \left(P_{S i} / P_{S i}^{S A T}\right)$, recognizing that Si in SiC is in equilibrium with Si in vapor phase.
- What is $P_{S i}$?
- Total pressure $=4.0 \mathrm{~Pa}$
- C and SiC are saturated, but their saturation vapor pressure are negligible

$$
\begin{gathered}
P_{S i} \approx P=4.0 P a, \quad \text { vapor is essentially pure } \mathbf{S i} \\
\mu_{S i}-\mu_{S i}^{o}=R T \ln \left(\frac{4.0}{4.4}\right)=-1,563 \mathrm{~J} / \mathrm{mol}
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
\Delta_{f} G_{S i C} & =\left(\mu_{S i}-\mu_{S i}^{o}\right)-\underbrace{\left(\mu_{C}-\mu_{C}^{o}\right)}_{0} \\
& =R G \ln \frac{4.0}{4.4} \\
& =-1,563 \mathrm{~J} / \mathrm{mol}
\end{aligned}
$$

4 Key to solving such problems

Ask "Who is in equilibrium with whom??"

MIT OpenCourseWare
https://ocw.mit.edu/

3.020 Thermodynamics of Materials

Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

