3.020 – Thermodynamics of Materials Recitation 3

Problem 1

In this problem we will calculate and sketch a unary phase diagram of water using the equation of Clausius-Clapeyron and thermodynamic data given in the table below. We will integrate the equation of Clausius-Clapeyron using appropriate approximations to find the analytical expressions P(T) for three phase transformations in water.

ΔH _{fus} =6.01kJ/mol	V ^s =1.958*10^-5m3/mol	T _{tri} =273.16K
	(=1.09cm3/g)	
ΔH_{vap} =44.0kJ/mol	V ^I =1.802*10^-5m3/mol	P _{tri} =611.73Pa
	(=1.00cm3/g)	
ΔH_{sub} =51.1kJ/mol	V ^v =RT/P	

a) Solid to liquid transformation:

1. What are the required approximations for this transformation?

2. Find the analytical expression P(T) that describes the two-phase equilibrium conditions after indefinite integration of the Clausius-Clapeyron equation for this transformation?

3. Use the derived relation to verify the melting temperature of water at atmospheric pressure.

- b) Liquid to vapor transformation:
 - 1. What are the required approximations?
 - 2. Find analytically the P(T) two-phase equilibrium conditions for this transformation?
 - 3. Use the derived relation to verify the boiling temperature of water at atmospheric pressure.
- c) Solid to vapor transformation:
 - 1. Required approximations?
 - 2. Find the analytical P(T) equilibrium conditions?
 - 3. We do not know the sublimation temperature of water at atmospheric pressure, why?
- d) Sketch a ln(P)-T diagram of water around the triple point using the above derived analytical expressions for the three two-phase coexisting lines.

You have drawn your first (approximate) unary phase diagram!

3.020 Thermodynamics of Materials Spring 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.