3.020 - Thermodynamics of Materials Recitation 4

Problem 1

The molar volume of a ternary solution $(1,2,3)$ is described by the equation: $V=5 X_{1}+10 X_{2}+15 X_{3}-$ $2 X_{1} X_{2}-2 X_{1} X_{3}-2 X_{2} X_{3}\left[\mathrm{~cm}^{3} / \mathrm{mol}\right]$. First, we will only consider the mixing of component 1 with component 2 in the absence of component 3 .
a) Simplify the equation above to the binary solution and calculate the molar volume (V) at the composition $X_{1}=X_{2}=0.5$
b) Calculate the volume of mixing $\left(\Delta V_{M I X}\right)$ at this particular composition. Is this quantity bigger or smaller than 0 ? What does it mean?
c) Calculate the partial molar volumes of mixing ($\Delta \bar{V}_{2}$ and $\Delta \bar{V}_{1}$) at this particular composition. Compare these quantities with the quantity found in (b). What does this mean?
d) Make a sketch of $\Delta V_{M I X}$ and V as a function of X_{2} and indicate all important volumes.

Now, we leave the ratio of component 1 and component 2 untouched ($X_{2} / X_{1}=1$) and we start adding component $3\left(X_{3}>0\right)$.
e) Calculate the partial molar volume of mixing $\Delta \bar{V}_{3}$ at the original composition ($X_{3}=0$), what does this mean?
f) Since we know from (e) that the volume of mixing will decrease by adding component 3, how much of component 3 do we need to add to minimize $\Delta V_{M I X}$? What is the final composition of the three components?
g) What is this minimal $\Delta V_{M I X}$, and what is the molar volume V at this final composition?

MIT OpenCourseWare
https://ocw.mit.edu/

3.020 Thermodynamics of Materials

Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

