1.021, 3.021, 10.333, 22.00 Introduction to Modeling and Simulation Spring 2011

Part I – Continuum and particle methods

#### How to model chemical interactions II

Lecture 6

Markus J. Buehler

Laboratory for Atomistic and Molecular Mechanics Department of Civil and Environmental Engineering Massachusetts Institute of Technology



#### Content overview

#### I. Particle and continuum methods

Lectures 2-13

- 1. Atoms, molecules, chemistry
- 2. Continuum modeling approaches and solution approaches
- Statistical mechanics
- 4. Molecular dynamics, Monte Carlo
- 5. Visualization and data analysis
- 6. Mechanical properties application: how things fail (and how to prevent it)
- 7. Multi-scale modeling paradigm
- 8. Biological systems (simulation in biophysics) how proteins work and how to model them

#### II. Quantum mechanical methods

- Lectures 14-26
- 1. It's A Quantum World: The Theory of Quantum Mechanics
- 2. Quantum Mechanics: Practice Makes Perfect
- 3. The Many-Body Problem: From Many-Body to Single-Particle
- 4. Quantum modeling of materials
- 5. From Atoms to Solids
- 6. Basic properties of materials
- 7. Advanced properties of materials
- 8. What else can we do?

#### Overview: Material covered so far...

- Lecture 1: Broad introduction to IM/S
- Lecture 2: Introduction to atomistic and continuum modeling (multi-scale modeling paradigm, difference between continuum and atomistic approach, case study: diffusion)
- Lecture 3: Basic statistical mechanics property calculation I
   (property calculation: microscopic states vs. macroscopic
   properties, ensembles, probability density and partition function)
- Lecture 4: Property calculation II (Monte Carlo, advanced property calculation, introduction to chemical interactions)
- Lecture 5: How to model chemical interactions I (example: movie of copper deformation/dislocations, etc.)
- Lecture 6: How to model chemical interactions II

#### Lecture 6: How to model chemical interactions II

#### **Outline:**

- 1. Case study: Deformation of copper wire (cont'd)
- 2. How to model metals: Multi-body potentials
- 3. Brittle versus ductile materials
- 4. Basic deformation mechanism in brittle materials crack extension

#### Goal of today's lecture:

- Complete example of copper deformation
- Learn how to build a model to describe brittle fracture (from scratch)
- Learn basics in fracture of brittle materials
- Apply our tools to model a particular material phenomena brittle fracture (useful for pset #2)

# 1. Case study: Deformation of copper wire (cont'd)

## A simulation with 1,000,000,000 particles Lennard-Jones - copper

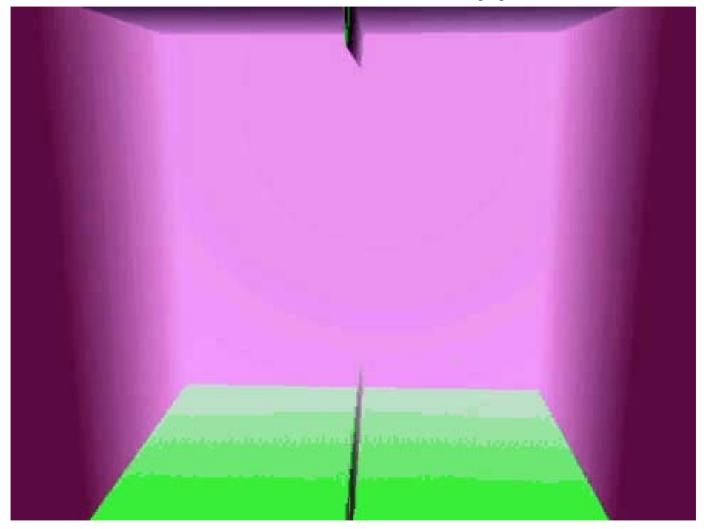
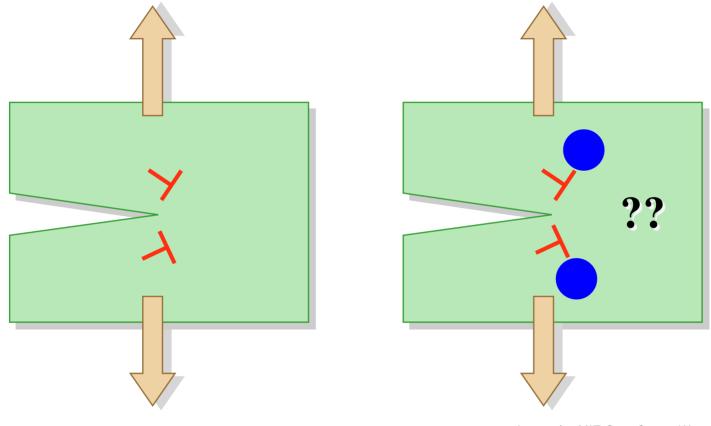
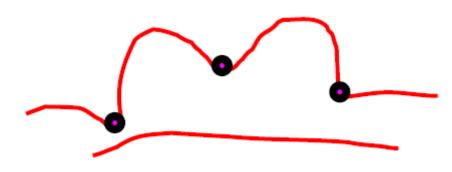


Fig. 1 c from Buehler, M., et al. "The Dynamical Complexity of Work-Hardening: A Large-Scale Molecular Dynamics Simulation." *Acta Mech Sinica* 21 (2005): 103-11.
© Springer-Verlag. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/fairuse">http://ocw.mit.edu/fairuse</a>.

## Strengthening mechanisms







Strengthening caused by hindering dislocation motion

If too difficult, ductile modes break down and material becomes brittle

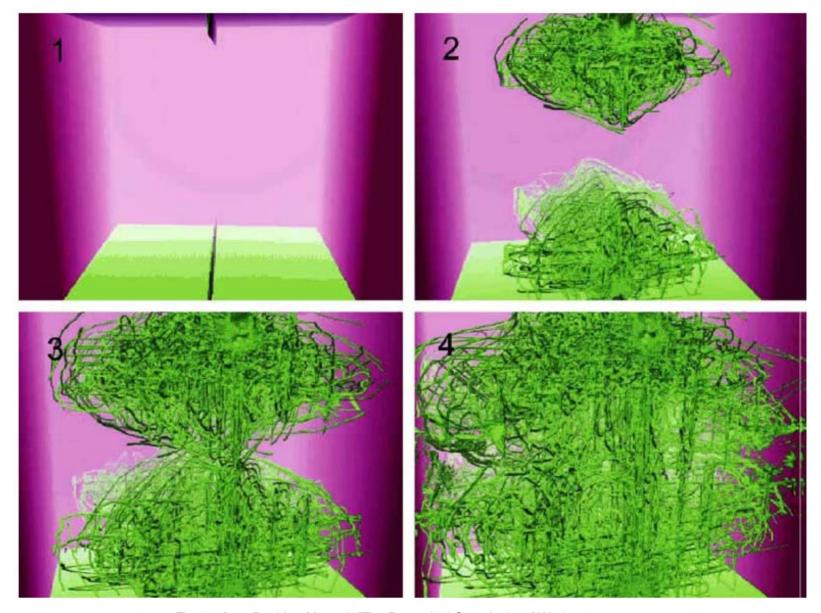


Fig. 1 c from Buehler, M. et al. "The Dynamical Complexity of Work-Hardening: A Large-Scale Molecular Dynamics Simulation." Acta Mech Sinica 21 (2005): 103-111.

© Springer-Verlag. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/fairuse">http://ocw.mit.edu/fairuse</a>.

### Parameters for Morse potential

(for reference)

#### Morse potential parameters for various metals

| Morgo   | Dotantial | <b>Parameters</b> | for            | 16 Motola   |
|---------|-----------|-------------------|----------------|-------------|
| 1010126 | rolentiai | ranameters        | $\mathbf{IOI}$ | TO IVICIAIS |

| Metal | $\alpha a_0$ | β     | L x 10 <sup>-22</sup> (eV) | $\alpha (A^{-1})$ | $r_0(A)$ | D (eV)  |
|-------|--------------|-------|----------------------------|-------------------|----------|---------|
|       |              |       |                            |                   |          |         |
| Pb    | 2.921        | 83.02 | 7.073                      | 1.1836            | 3.733    | 0.2348  |
| Ag    | 2.788        | 71.17 | 10.012                     | 1.3690            | 3.115    | 0.3323  |
| Ni    | 2.500        | 51.78 | 12.667                     | 1.4199            | 2.780    | 0.4205  |
| Cu    | 2.450        | 49.11 | 10.330                     | 1.3588            | 2.866    | 0.3429  |
| Al    | 2.347        | 44.17 | 8.144                      | 1.1646            | 3.253    | 0.2703  |
| Ca    | 2.238        | 39.63 | 4.888                      | 0.80535           | 4.569    | 0.1623  |
| Sr    | 2.238        | 39.63 | 4.557                      | 0.73776           | 4.988    | 0.1513  |
| Mo    | 2.368        | 88.91 | 24.197                     | 1.5079            | 2.976    | 0.8032  |
| W     | 2.225        | 72.19 | 29.843                     | 1.4116            | 3.032    | 0.9906  |
| Cr    | 2.260        | 75.92 | 13.297                     | 1.5721            | 2.754    | 0.4414  |
| Fe    | 1.988        | 51.97 | 12.573                     | 1.3885            | 2.845    | 0.4174  |
| Ba    | 1.650        | 34.12 | 4.266                      | 0.65698           | 5.373    | 0.1416  |
| K     | 1.293        | 23.80 | 1.634                      | 0.49767           | 6.369    | 0.05424 |
| Na    | 1.267        | 23.28 | 1.908                      | 0.58993           | 5.336    | 0.06334 |
| Cs    | 1.260        | 23.14 | 1.351                      | 0.41569           | 7.557    | 0.04485 |
| Rb    | 1.206        | 22.15 | 1.399                      | 0.42981           | 7.207    | 0.04644 |

Adapted from Table I in Girifalco, L. A., and V. G. Weizer. "Application of the Morse Potential Function to Cubic Metals." *Physical Review* 114 (May 1, 1959): 687-690.

Image by MIT OpenCourseWare.

## Morse potential: application example (nanowire)

See: Komanduri, R., et al. "Molecular Dynamics (MD) Simulation of Uniaxial Tension of Some Single-Crystal Cubic Metals at Nanolevel." *International Journal of Mechanical Sciences* 43, no. 10 (2001): 2237-60.

#### Further Morse potential parameters:

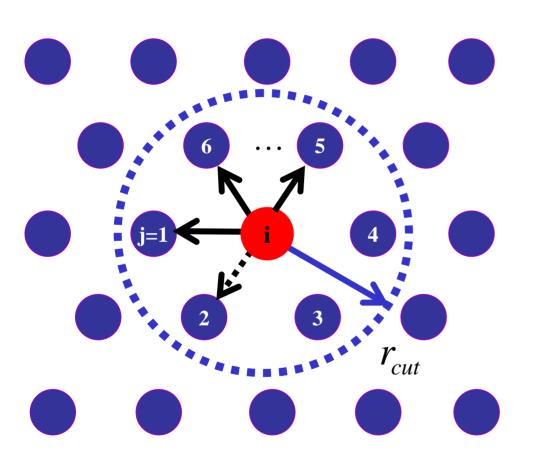
Table 3 Morse potential parameters used in MD simulation of uniaxial tensile loading [24]

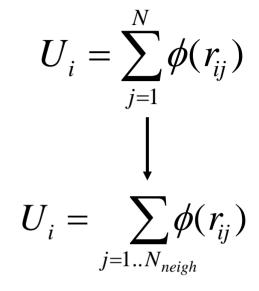
| Material  | Crystal<br>structure | Dissociation energy, $D$ (eV) | Equilibrium radius, $r_0$ (Å) | $\alpha$ -parameter $(\mathring{A}^{-1})$ | Lattice<br>constant (Å) |
|-----------|----------------------|-------------------------------|-------------------------------|-------------------------------------------|-------------------------|
| Aluminium | FCC                  | 0.2703                        | 3.253                         | 1.1650                                    | 4.05                    |
| Copper    | FCC                  | 0.3429                        | 2.866                         | 1.3590                                    | 3.62                    |
| Nickel    | FCC                  | 0.4205                        | 2.780                         | 1.4199                                    | 3.52                    |
| Iron      | BCC                  | 0.4172                        | 2.845                         | 1.3890                                    | 2.87                    |
| Chromium  | BCC                  | 0.4414                        | 2.754                         | 1.5721                                    | 2.89                    |
| Tungsten  | BCC                  | 0.9906                        | 3.032                         | 1.4116                                    | 3.17                    |

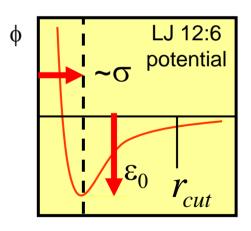
Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

# Cutoff-radius: saving time

#### **Cutoff radius**







r

Cutoff radius = considering interactions only to a certain distance Basis: Force contribution negligible (slope)

#### Derivative of LJ potential ~ force

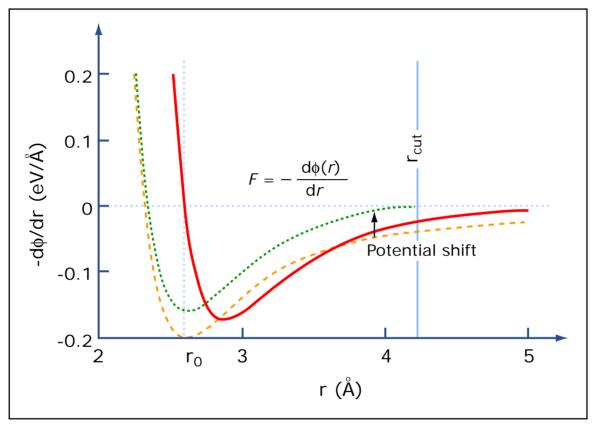


Image by MIT OpenCourseWare.

Beyond cutoff: Changes in energy (and thus forces) small

Putting it all together...

## MD updating scheme: Complete

(1) Updating method (integration scheme)

at  $t_0$ - $\Delta t$ 

$$r_i(t_0 + \Delta t) = -\underline{r}_i(t_0 - \Delta t) + 2\underline{r}_i(t_0)\Delta t + \underline{a}_i(t_0)(\Delta t)^2 + \dots$$
Positions Positions Accelerations

at  $t_0$ 

(2) Obtain accelerations from forces

$$f_i = ma_i$$
  $a_i = f_i / m$ 

(4) Crystal (initial conditions) Positions at  $t_0$ 

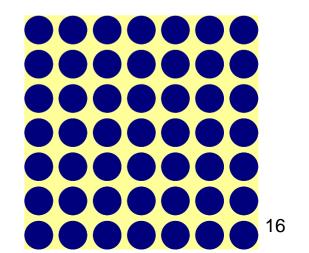
at  $t_0$ 

(3) Obtain forces from potential

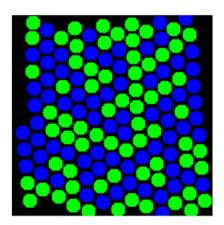
$$F = -\frac{\mathrm{d}\,\phi(r)}{\mathrm{d}\,r} \qquad f_i = F\frac{x_i}{r}$$

**Potential** 

$$\phi(r) = 4\varepsilon \left( \left[ \frac{\sigma}{r} \right]^{12} - \left[ \frac{\sigma}{r} \right]^{6} \right)$$



# 2.2 How to model metals: Multi-body potentials



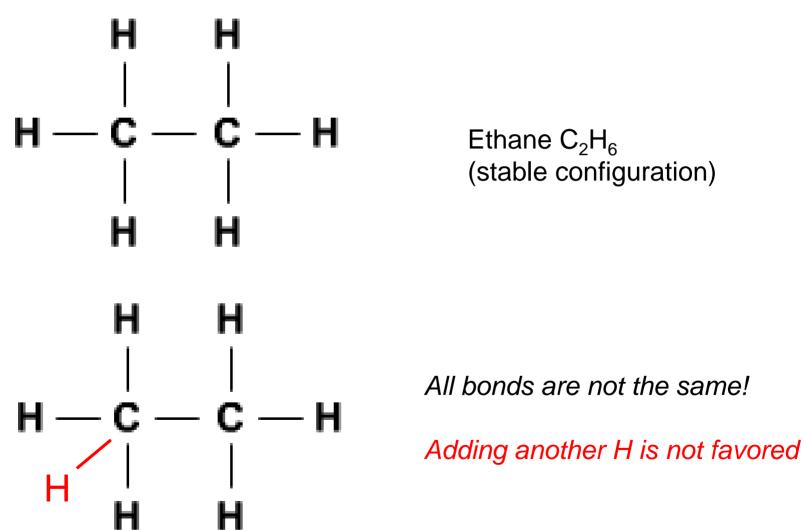
Courtesy of the Center for Polymer Studies at Boston University. Used with permission.

Pair potential: Total energy sum of all pairs of bonds Individual bond contribution does not depend on other atoms

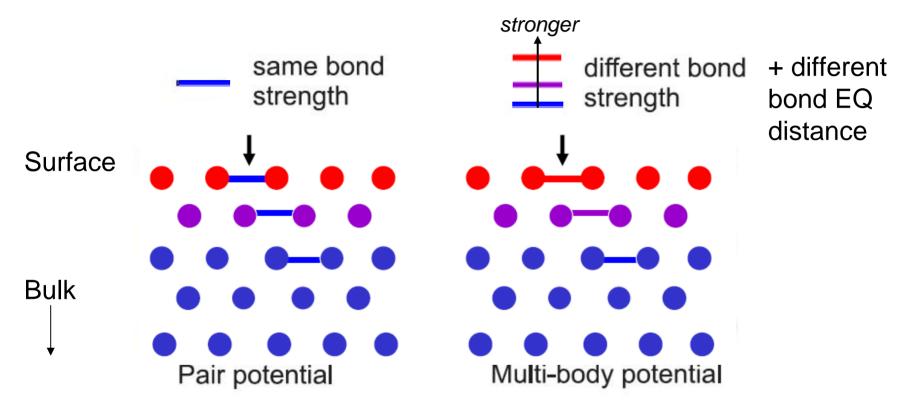
"all bonds are the same"

$$U_{total} = \frac{1}{2} \sum_{i=1, i \neq j}^{N} \sum_{j=1}^{N} \phi(r_{ij})$$

#### Are all bonds the same? - valency in hydrocarbons



#### Are all bonds the same? - metallic systems



Pair potentials: All bonds are equal!

Reality: Have environment effects; it matter that there is a

free surface!

#### Are all bonds the same?

Bonding energy of red atom in is six times bonding energy in •••





This is in contradiction with both experiments and more accurate quantum mechanical calculations on many materials

Bonding energy of atom 
$$i$$
  $U_i = \sum_{j=1}^N \phi(r_{ij})$ 



$$U_i = \sum_{j=1}^6 \phi(r_{ij}) \qquad \longleftarrow \qquad U_i = \phi(r_{ij})$$



#### Are all bonds the same?

Bonding energy of red atom in is six times bonding energy in •••





This is in contradiction with both experiments and more accurate quantum mechanical calculations on many materials

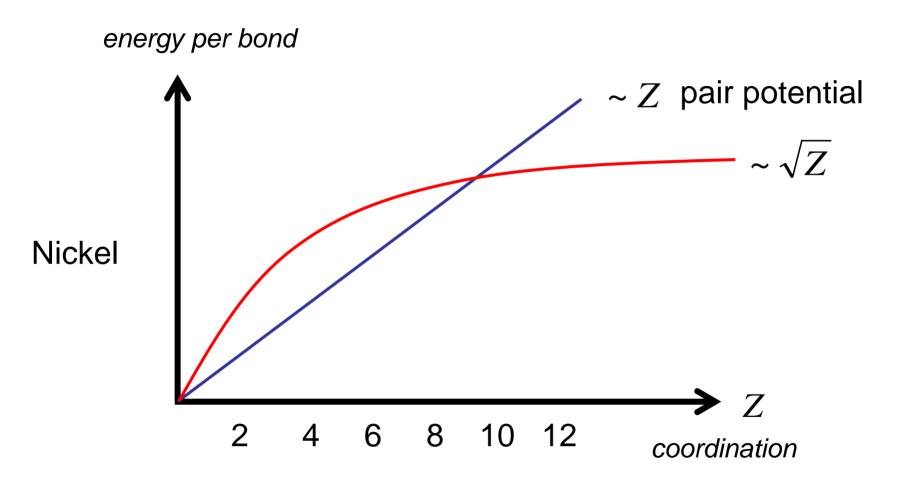
For pair potentials  $\sim Z$ 

For metals  $\sim \sqrt{Z}$ 

Z: Coordination = how many immediate neighbors an atom has

Bonds get "weaker" as more atoms are added to central atom

#### Bond strength depends on coordination



#### Transferability of pair potentials

Pair potentials have limited transferability:

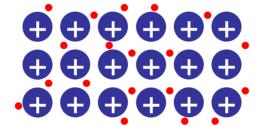
Parameters determined for molecules can not be used for crystals, parameters for specific types of crystals can not be used to describe range of crystal structures

 E.g. difference between FCC and BCC can not be captured using a pair potential

## Metallic bonding: multi-body effects

 Need to consider more details of chemical bonding to understand environmental effects

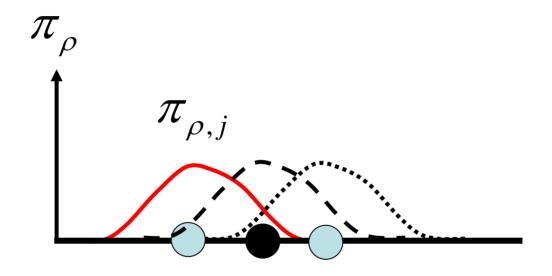
- Electron (q=-1)
- lon core (q=+N)



Delocalized valence electrons moving between nuclei generate a binding force to hold the atoms together: **Electron gas model** (positive ions in a sea of electrons)

Mostly non-directional bonding, but the bond strength indeed depends on the environment of an atom, precisely the electron density imposed by other atoms

#### Concept: include electron density effects



Each atom features a particular distribution of electron density

## Concept: include electron density effects

Electron density 
$$\rho_i = \sum_{j=1..N_{neigh}} \pi_{\rho,j}(r_{ij})$$
  $r_{ij} = x_j - x_i$  at atom  $i$ 

Atomic electron density contribution of atom  $j$  to atom  $i$ 

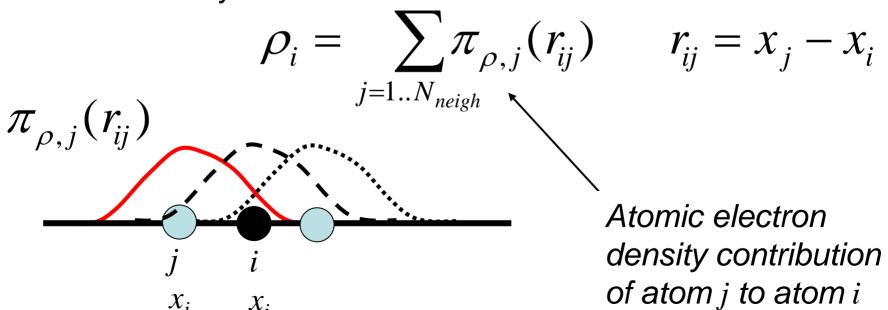
Contribution to electron density at site i due to electron density of atom j evaluated at distance  $r_{ii}$ 

#### Concept: include electron density effects

$$\phi_i = \frac{1}{2} \sum_{j=1..N_{neigh}} \phi(r_{ij}) + F(\rho_i)$$
embedding term  $F$  (how local electron density contributes to

potential energy)

Electron density at atom i



# Embedded-atom method (EAM)

#### Atomic energy

$$\phi_i = \frac{1}{2} \sum_{j=1..N_{neigh}} \phi(r_{ij}) + F(\rho_i)$$

Pair potential energy Embedding energy

Embedding energy as a function of electron density

Total energy

$$U_{total} = \sum_{i=1}^{N} \phi_i$$

 $\rho_i$  Electron density at atom i based on a "pair potential":

$$\rho_i = \sum_{j=1..N_{neigh}} \pi_{\rho,j}(r_{ij})$$

## Embedding term: example

Embedding energy

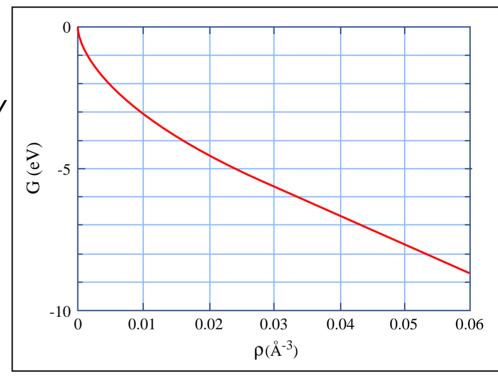


Image by MIT OpenCourseWare.

Electron density

$$\phi_i = \sum_{j=1..N_{neigh}} \left( \frac{1}{2} \phi(r_{ij}) + F(\rho_i) \right)$$

Pair potential energy

Embedding energy as a function of electron density

## Pair potential term: example

Pair contribution

$$\phi(r_{ij})$$

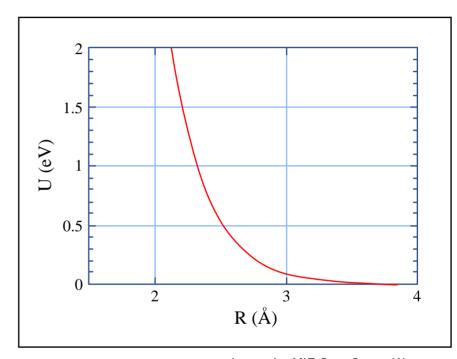


Image by MIT OpenCourseWare.

Distance 
$$r_{ij}$$

$$\phi_i = \sum_{j=1..N_{neigh}} \left( \frac{1}{2} \phi(r_{ij}) + F(\rho_i) \right)$$

Pair potential energy

Embedding energy as a function of electron density

# Effective pair interactions

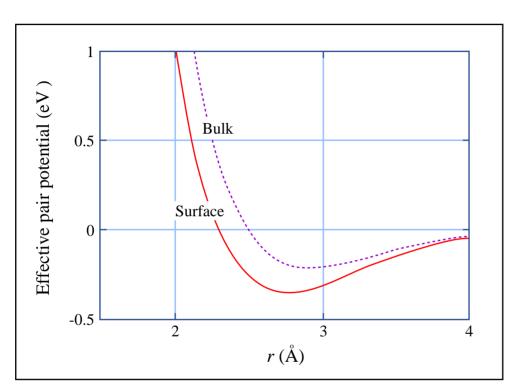
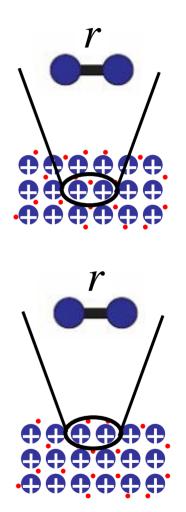


Image by MIT OpenCourseWare.



Can describe differences between bulk and surface

# Comparison with experiment

## Diffusion: Activation energies

| System   | EAM  | Exp. |  |
|----------|------|------|--|
| Ag in Cu | 2.05 | 2.02 |  |
| Au in Cu | 1.88 | 1.98 |  |
| Ni in Cu | 2.37 | 2.46 |  |
| Pd in Cu | 2.06 | 2.36 |  |
| Pt in Cu | 2.20 | 2.42 |  |
| Cu in Ag | 1.92 | 2.00 |  |
| Au in Ag | 2.04 | 2.06 |  |
| Pd in Ag | 2.19 | 2.46 |  |
| Pt in Ag | 2.33 | 2.44 |  |
| Ag in Au | 1.80 | 1.75 |  |
| Cu in Au | 1.82 | 1.76 |  |
| Ni in Au | 1.90 | 1.95 |  |
| Pt in Au | 2.07 | 2.09 |  |
| Pd in Au | 1.93 | 2.02 |  |
| Ag in Ni | 2.68 | 2.89 |  |
| Cu in Ni | 2.76 | 2.64 |  |
| Au in Pt | 2.49 | 2.61 |  |
| Ag in Pt | 2.71 | 2.68 |  |

(in eV)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

## Comparison EAM model vs. experiment

| Element | EAM  | Experiment |
|---------|------|------------|
| Cu      | 1340 | 1358       |
| Ag      | 1170 | 1234       |
| Au      | 1090 | 1338       |
| Ni      | 1740 | 1726       |
| Pd      | 1390 | 1825       |
| Pt      | 1480 | 2045       |
|         |      |            |

Melting temperature (in K)

#### Summary: EAM method

- State of the art approach to model metals
- Very good potentials available for Ni, Cu, Al since late 1990s, 2000s
- Numerically efficient, can treat billions of particles
- Not much more expensive than pair potential (approximately three times), but describes physics much better
- Strongly recommended for use!

#### 3. Brittle versus ductile materials

#### Tensile test of a wire

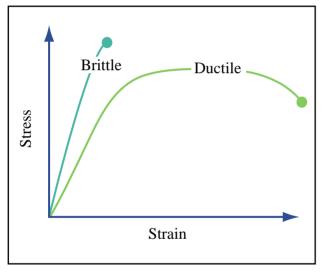


Image by MIT OpenCourseWare.

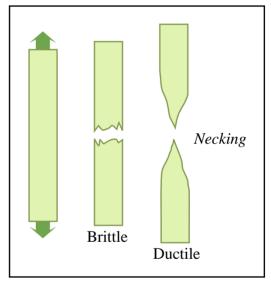
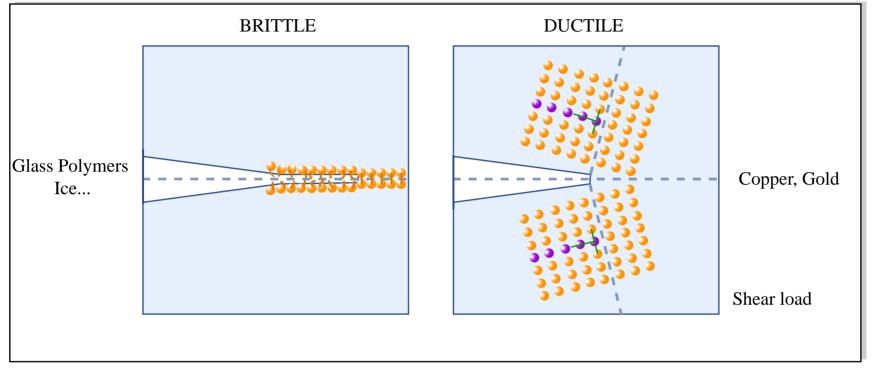


Image by MIT OpenCourseWare.

#### Ductile versus brittle materials



Difficult to deform, breaks easily

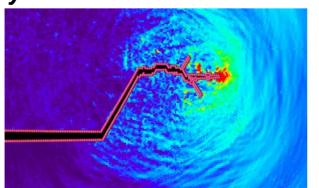
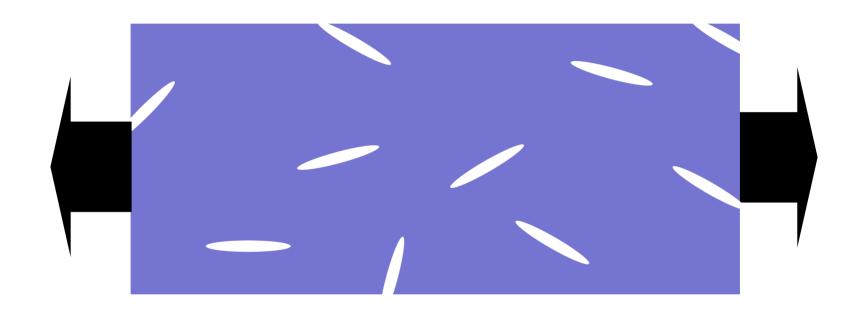


Image by MIT OpenCourseWare.

# Easy to deform hard to break



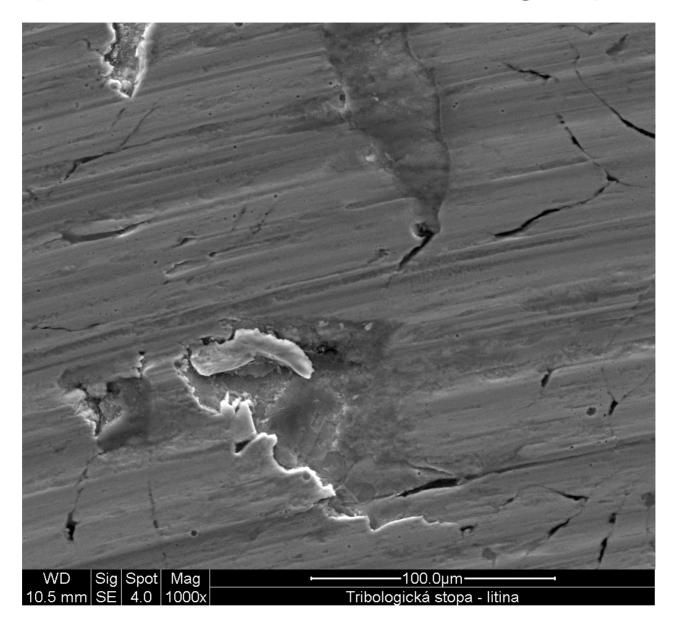
## Deformation of materials: Nothing is perfect, and flaws or cracks matter



#### Failure of materials initiates at cracks

*Griffith, Irwine* and others: Failure initiates at defects, such as cracks, or grain boundaries with reduced traction, nano-voids, other imperfections 39

## SEM picture of material: nothing is perfect



#### Significance of material flaws

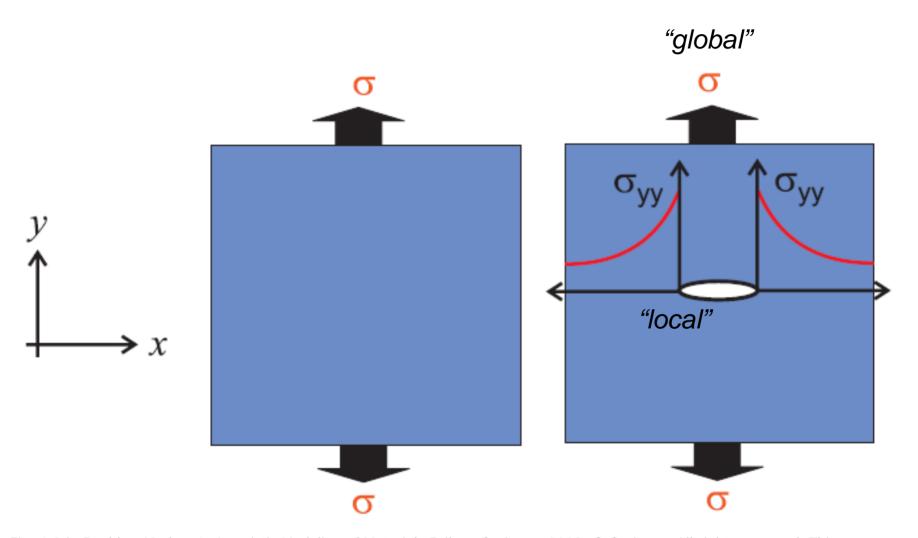
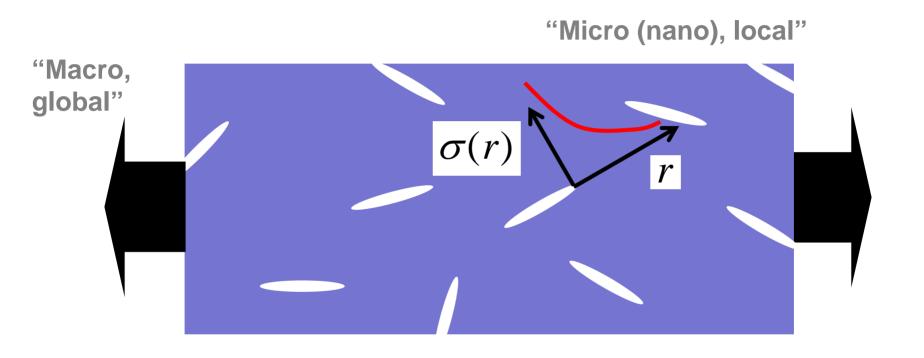


Fig. 1.3 in Buehler, Markus J. *Atomistic Modeling of Materials Failure*. Springer, 2008. © Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/fairuse">http://ocw.mit.edu/fairuse</a>.

## Deformation of materials: Nothing is perfect, and flaws or cracks matter



#### Failure of materials initiates at cracks

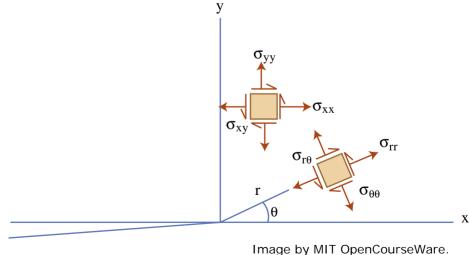
**Griffith, Irwine** and others: Failure initiates at defects, such as cracks, or grain boundaries with reduced traction, nano-voids, other imperfections 42

# Cracks feature a singular stress field, with singularity at the tip of the crack

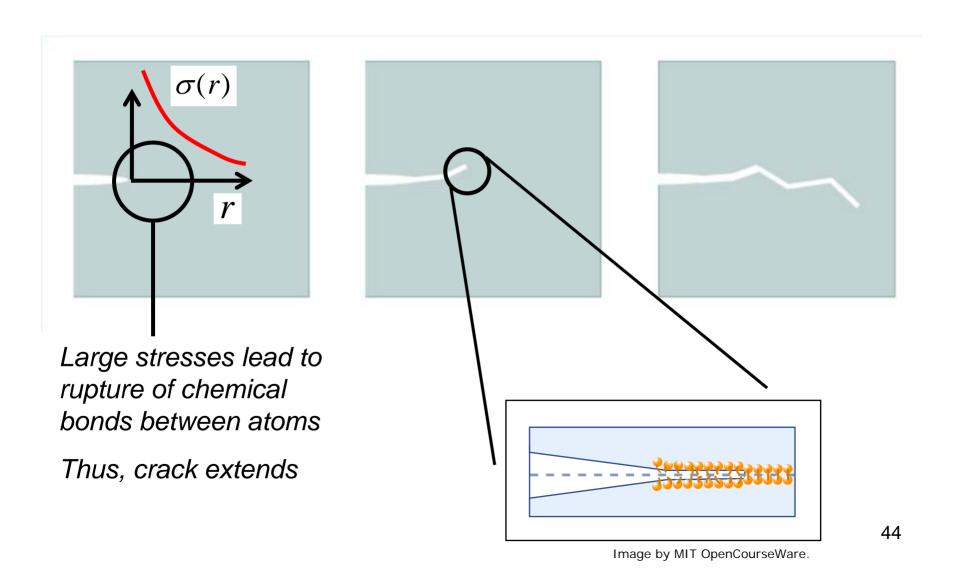
#### stress tensor

$$\begin{cases}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{xy}
\end{cases} = \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \begin{cases}
1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \\
1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \\
\sin \frac{\theta}{2} \cos \frac{3\theta}{2}
\end{cases}$$

$$\sigma(r) \sim \frac{1}{\sqrt{r}}$$



## Crack extension: brittle response



#### Lattice shearing: ductile response

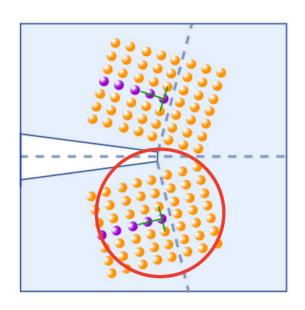
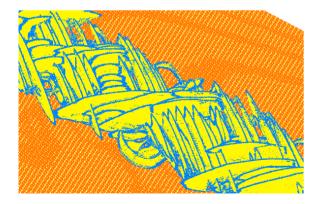


Image by MIT OpenCourseWare.



- Instead of crack extension, induce shearing of atomic lattice
- Due to large shear stresses at crack tip
- Lecture 5

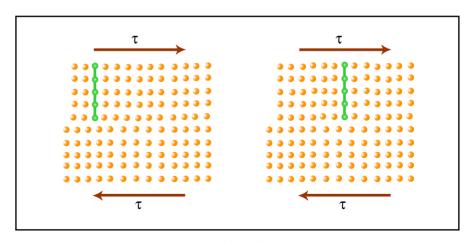


Image by MIT OpenCourseWare.

#### Brittle vs. ductile material behavior

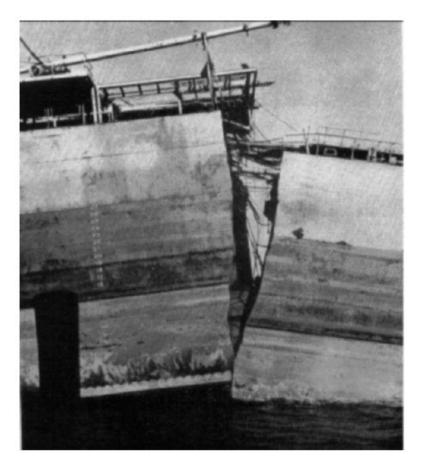
- Whether a material is ductile or brittle depends on the material's propensity to undergo shear at the crack tip, or to break atomic bonds that leads to crack extension
- Intimately linked to the atomic structure and atomic bonding
- Related to temperature (activated process); some mechanism are easier accessible under higher/lower temperature
- Many materials show a propensity towards brittleness at low temperature
- Molecular dynamics is a quite suitable tool to study these mechanisms, that is, to find out what makes materials brittle or ductile

# Historical example: significance of brittle vs. ductile fracture

- Liberty ships: cargo ships built in the U.S. during World War II (during 1930s and 40s)
- Eighteen U.S. shipyards built 2,751 Liberties between 1941 and 1945
- Early Liberty ships suffered hull and deck cracks, and several were lost to such structural defects
- Twelve ships, including three of the 2710 Liberties built, broke in half without warning, including the SS John P. Gaines (sank 24 November 1943)
- Constance Tipper of Cambridge University demonstrated that the fractures were initiated by the grade of steel used which suffered from embrittlement.
- She discovered that the ships in the North Atlantic were exposed to temperatures that could fall below a critical point when the mechanism of failure changed from ductile to brittle, and thus the hull could fracture relatively easily.

# Liberty ships: brittle failure





# 4. Basic deformation mechanism in brittle materials - crack extension

#### Introduction: brittle fracture

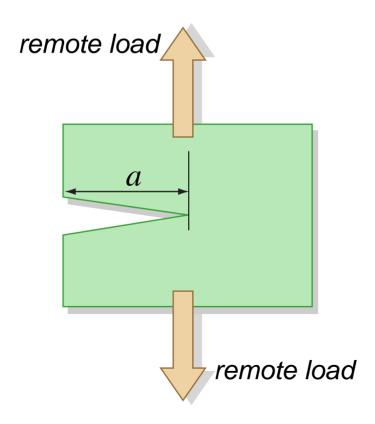
- Materials: glass, silicon, many ceramics, rocks
- At large loads, rather than accommodating a shape change, materials break

Image courtesy of quinn.anya.



### Science of fracture: model geometry

- Typically consider a single crack in a crystal
- Remotely applied mechanical load
- Following discussion focused on single cracks and their behavior



### Brittle fracture loading conditions

 Commonly consider a single crack in a material geometry, under three types of loading: mode I, mode II and mode III

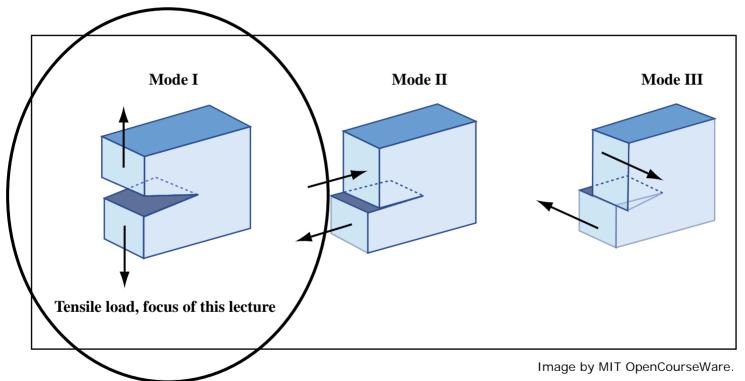


image by with opencourseware.

Tensile load, focus of this lecture

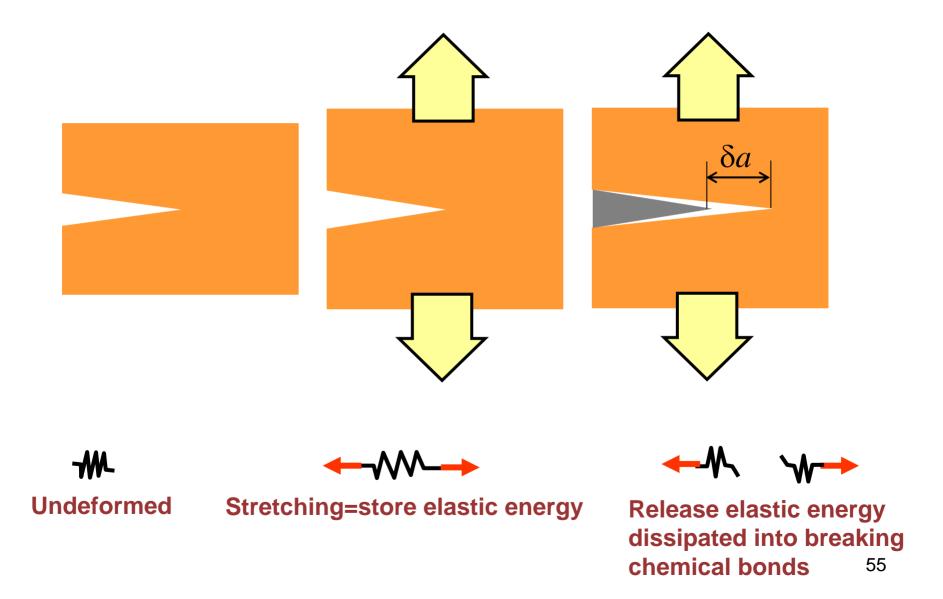
#### Brittle fracture mechanisms: fracture is a multiscale phenomenon, from nano to macro

Image removed due to copyright restrictions. See Fig. 6.2 in Buehler, Markus J. *Atomistic Modeling of Materials Failure*. Springer, 2008.

#### Focus of this part

- Basic fracture process: dissipation of elastic energy
- Fracture initiation, that is, at what applied load to fractures initiate
- Fracture dynamics, that is, how fast can fracture propagate in material

#### Basic fracture process: dissipation of elastic energy



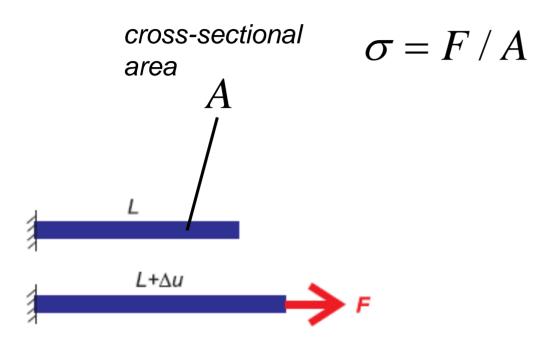
#### Elasticity = reversible deformation

cross-sectional area A  $L+\Delta u$ 

Stress?

Force per unit area

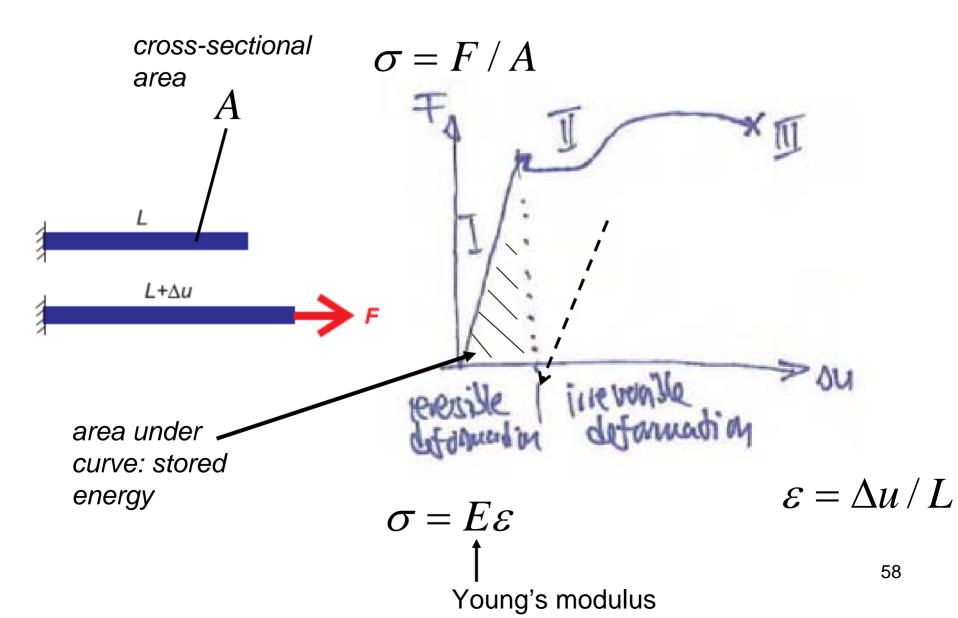
#### Elasticity = reversible deformation



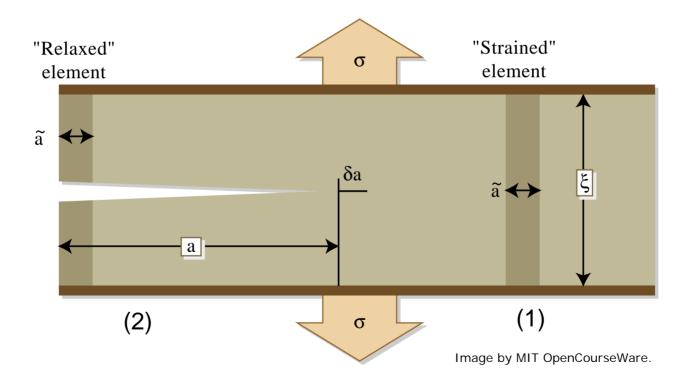
Stress?

Force per unit area

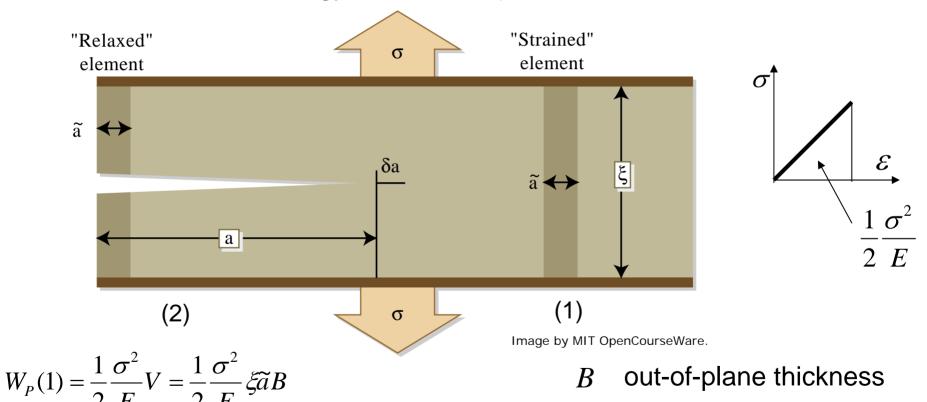
#### Elasticity = reversible deformation



- Fracture is a dissipative process in which elastic energy is dissipated to break bonds (and to heat at large crack speeds)
- Energy to break bonds = surface energy  $\gamma_s$  (energy necessary to create new surface, dimensions: energy/area, Nm/m<sup>2</sup>)



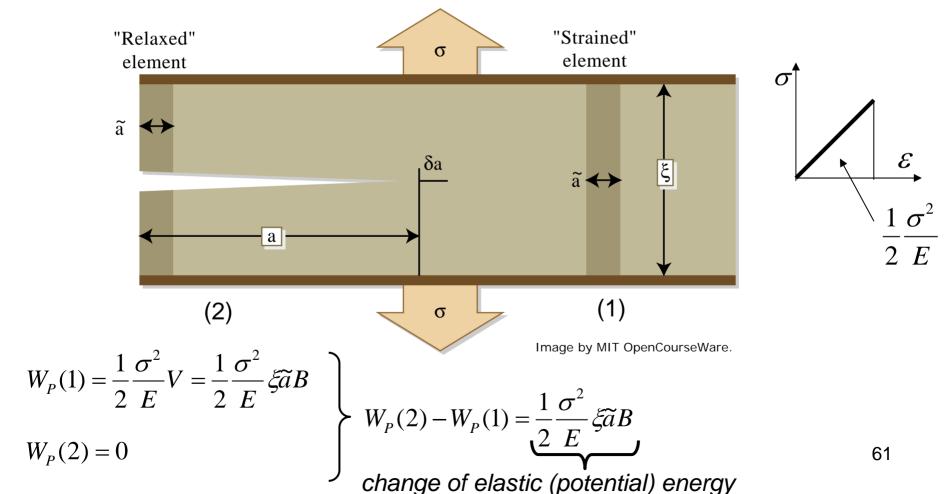
- Fracture is a dissipative process in which elastic energy is dissipated to break bonds (and to heat at large crack speeds)
- Energy to break bonds = surface energy  $\gamma_s$  (energy necessary to create new surface, dimensions: energy/area, Nm/m<sup>2</sup>)



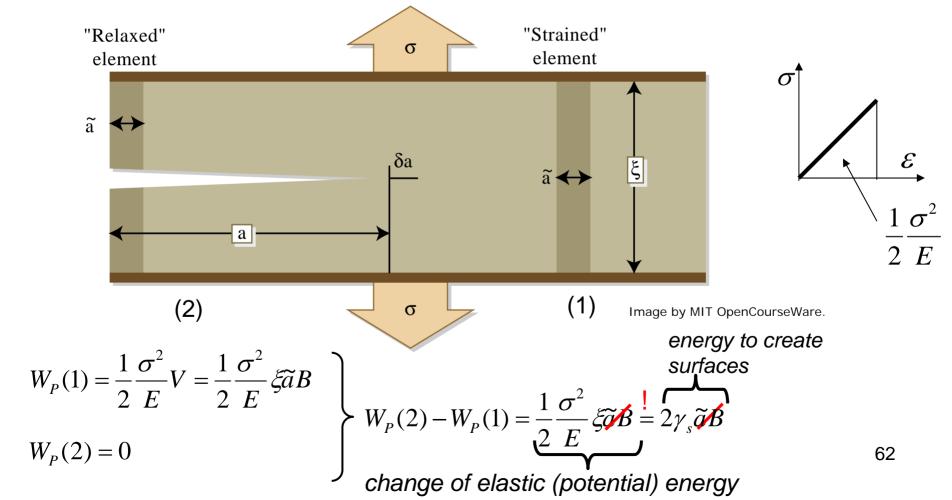
 $W_{P}(2) = 0$ 

60

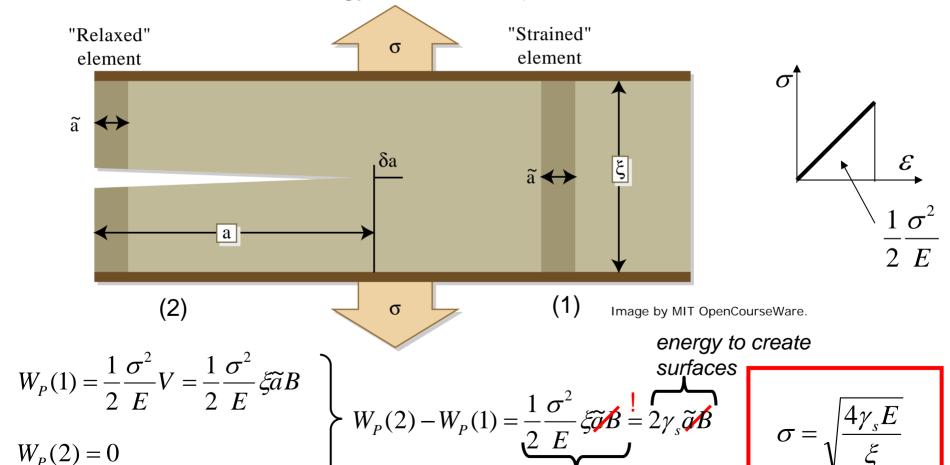
- Fracture is a dissipative process in which elastic energy is dissipated to break bonds (and to heat at large crack speeds)
- Energy to break bonds = surface energy  $\gamma_s$  (energy necessary to create new surface, dimensions: energy/area, Nm/m<sup>2</sup>)



- Fracture is a dissipative process in which elastic energy is dissipated to break bonds (and to heat at large crack speeds)
- Energy to break bonds = surface energy  $\gamma_s$  (energy necessary to create new surface, dimensions: energy/area, Nm/m<sup>2</sup>)

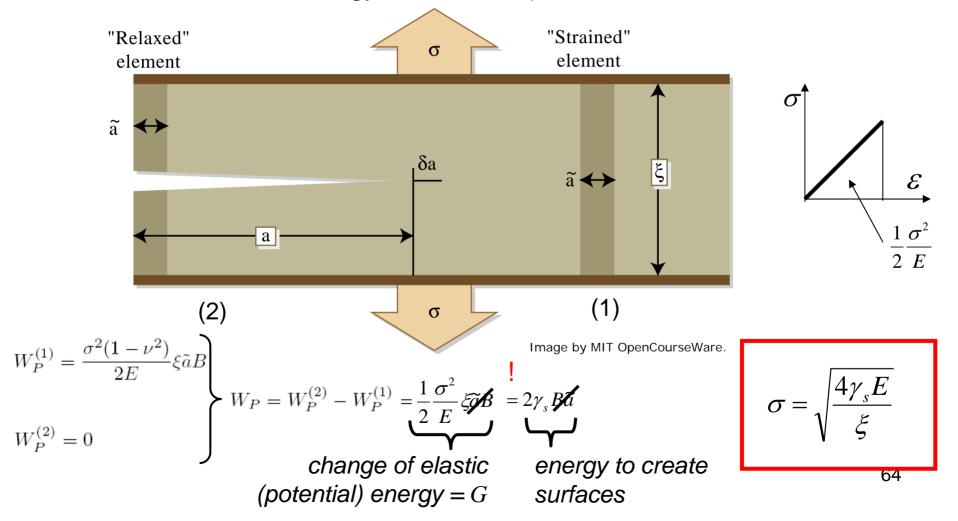


- Fracture is a dissipative process in which elastic energy is dissipated to break bonds (and to heat at large crack speeds)
- Energy to break bonds = surface energy  $\gamma_s$  (energy necessary to create new surface, dimensions: energy/area, Nm/m<sup>2</sup>)



change of elastic (potential) energy

- Fracture is a dissipative process in which elastic energy is dissipated to break bonds (and to heat at large crack speeds)
- Energy to break bonds = surface energy  $\gamma_s$  (energy necessary to create new surface, dimensions: energy/area, Nm/m<sup>2</sup>)



#### Griffith condition for fracture initiation

■ Energy release rate G, that is, the elastic energy released per unit crack advance must be equal or larger than the energy necessary to create new surfaces

$$G := \frac{1}{2} \frac{\sigma^2}{E} \xi = 2y_s \qquad G = 2\gamma_s$$

- Provides criterion to predict failure initiation
- Calculation of G can be complex, but straightforward for thin strips as shown above
- Approach to calculate G based on "stress intensity factor" (see further literature, e.g. Broberg, Anderson, Freund, Tada)

#### Brittle fracture mechanisms

- Once nucleated, cracks in brittle materials spread rapidly, on the order of sound speeds
- Sound speeds in materials (=wave speeds):
  - Rayleigh-wave speed  $c_R$  (speed of surface waves)
  - shear wave speed  $c_s$  (speed of shear waves)
  - longitudinal wave speed  $c_i$  (speed of longitudinal waves)
- Maximum speeds of cracks is given by sound speeds, depending on mode of loading (mode I, II, III)

Linear elastic continuum theory

#### Sound speeds in materials: overview

| Material | $c_R \text{ (in m/s)}$ | $c_s \text{ (in m/s)}$ | $c_l \text{ (in m/s)}$ |
|----------|------------------------|------------------------|------------------------|
| Steel    | 2,940                  | 3,200                  | 6,000                  |
| Al       | 2,850                  | 3,100                  | 6,300                  |
| Glass    | 3,030                  | 3,300                  | 5,800                  |
| PMMA     | 920                    | 1,000                  | 2,400                  |

Wave speeds are calculated based on elastic properties of material

$$c_l = \sqrt{\frac{3\mu}{\rho}}$$
  $c_s = \sqrt{\frac{\mu}{\rho}}$   $c_R \approx \beta c_s$   $\beta \approx 0.923$ 

 $\mu$  = shear modulus  $E = 8/3\mu$   $\mu = 3/8E$ 

$$E = 8/3\mu$$

$$\mu = 3/8R$$

# Limiting speeds of cracks: linear elastic continuum theory

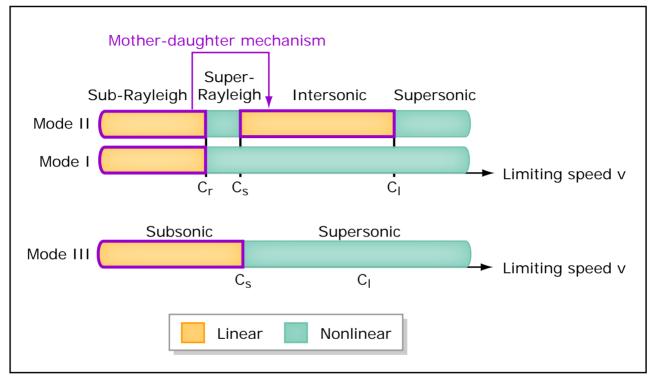


Image by MIT OpenCourseWare.

- Cracks can not exceed the limiting speed given by the corresponding wave speeds unless material behavior is nonlinear
- Cracks that exceed limiting speed would produce energy (physically impossible *linear elastic continuum theory*)

#### Physical reason for crack limiting speed

- Physical (mathematical) reason for the limiting speed is that it becomes increasingly difficult to increase the speed of the crack by adding a larger load
- When the crack approaches the limiting speed, the resistance to fracture diverges to infinity (=dynamic fracture toughness)

Image removed due to copyright restrictions.

Please see: Fig. 6.15 in Buehler, Markus J. Atomistic Modeling of Materials Failure. Springer, 2008.

#### Linear versus nonlinear elasticity=hyperelasticity

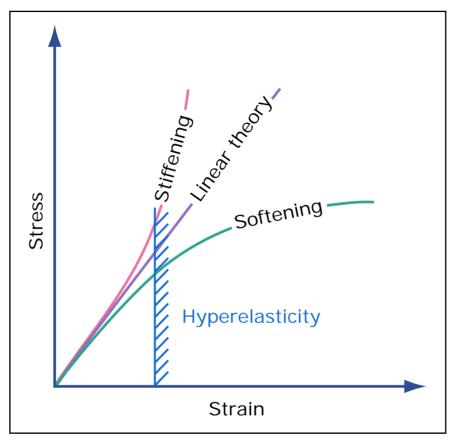


Image by MIT OpenCourseWare.

**Linear elasticity:** Young's modulus (stiffness) does not change with deformation

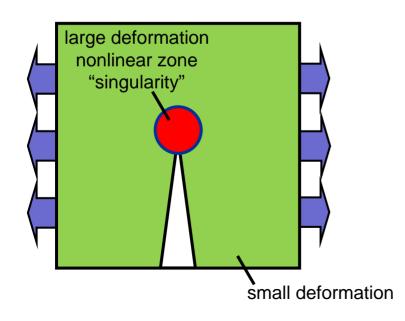
**Nonlinear elasticity = hyperelasticity**: Young's modulus (stiffness) changes with deformation

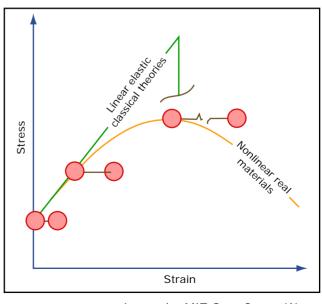
### Subsonic and supersonic fracture

- Under certain conditions, material nonlinearities (that is, the behavior of materials under large deformation = hyperelasticity) becomes important
- This can lead to different limiting speeds than described by the model introduced above

$$\sigma(r) \sim \frac{1}{\sqrt{r}}$$

#### Deformation field near a crack





#### Limiting speeds of cracks

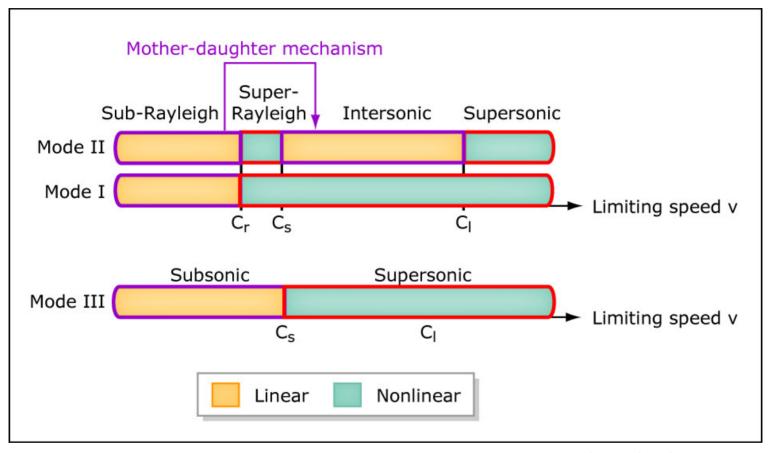
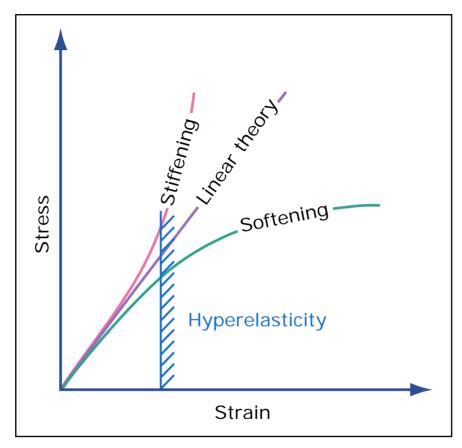


Image by MIT OpenCourseWare.

- Under presence of hyperelastic effects, cracks can exceed the conventional barrier given by the wave speeds
- This is a "local" effect due to enhancement of energy flux
- Subsonic fracture due to local softening, that is, reduction of energy flux

### Stiffening vs. softening behavior

real materials



"linear elasticity"

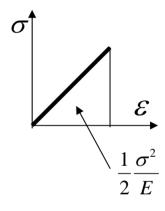


Image by MIT OpenCourseWare.

#### Increased/decreased wave speed

$$c_l = \sqrt{\frac{3\mu}{\rho}}$$

$$c_s = \sqrt{\frac{\mu}{\rho}}$$

$$c_R \approx \beta c_s$$

$$c_R \approx \beta c_s \qquad \beta \approx 0.923$$

#### Energy flux reduction/enhancement

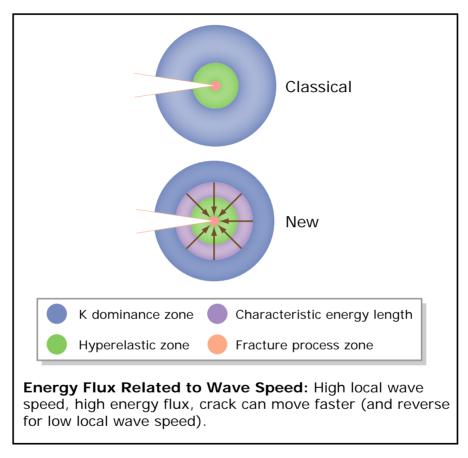
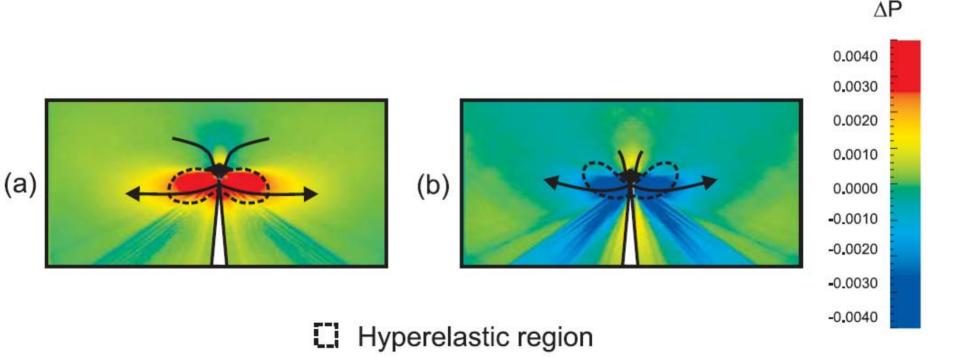


Image by MIT OpenCourseWare.

Energy flux related to wave speed: high local wave speed, high energy flux, crack can move faster (and reverse for low local wave speed)

### Physical basis for subsonic/supersonic fracture

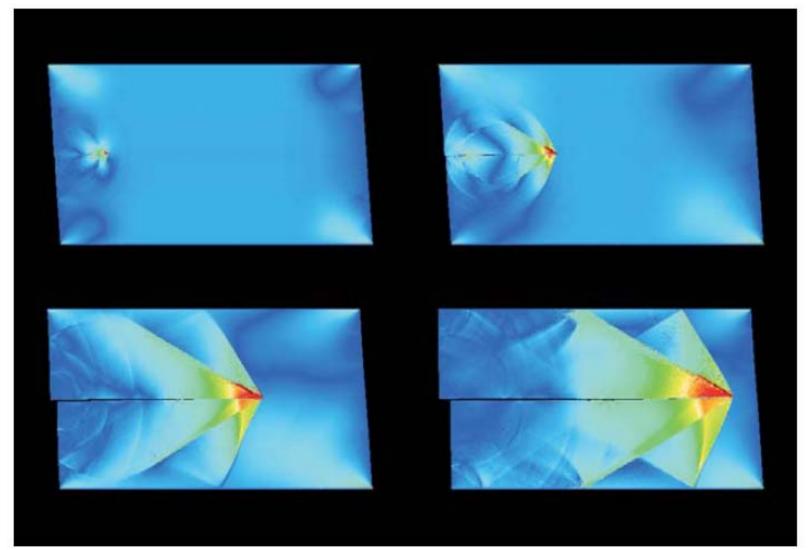
- Changes in energy flow at the crack tip due to changes in local wave speed (energy flux higher in materials with higher wave speed)
- Controlled by a characteristic length scale  $\chi$



# Summary: atomistic mechanisms of brittle fracture

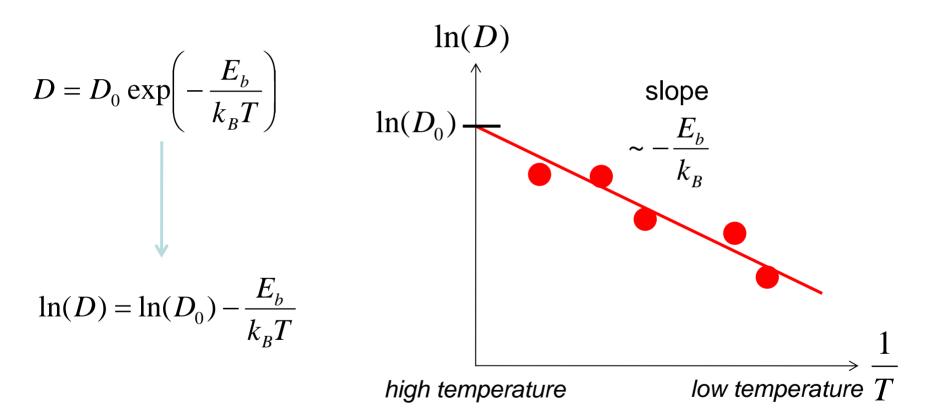
- Brittle fracture rapid spreading of a small initial crack
- Cracks initiate based on **Griffith condition**  $G = 2\gamma_s$
- Cracks spread on the order of sound speeds (km/sec for many brittle materials)
- Cracks have a maximum speed, which is given by characteristic sound speeds for different loading conditions)
- Maximum speed can be altered if material is strongly nonlinear, leading to supersonic or subsonic fracture

### Supersonic fracture: mode II (shear)



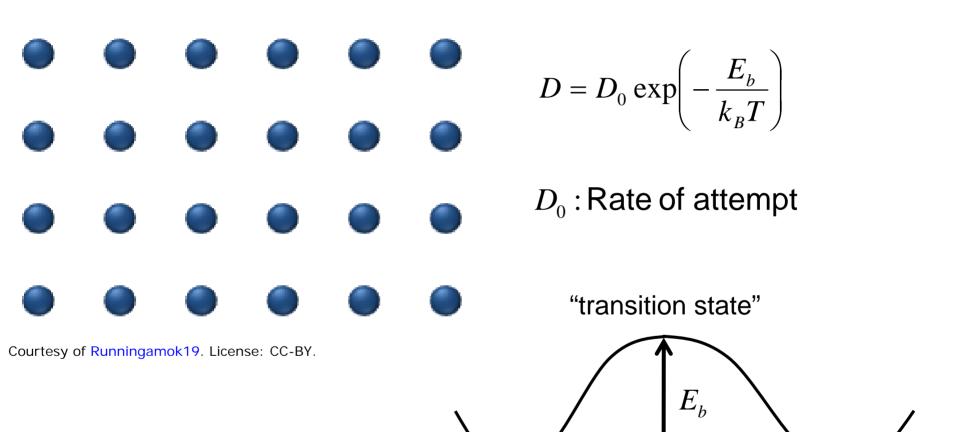
## Appendix: Notes for pset #1

### Notes regarding pset #1 (question 1.)



Plot data extracted from RMSD graph, then fit equation above and identify parameters

#### Mechanism and energy barrier



MIT OpenCourseWare http://ocw.mit.edu

 $3.021\mbox{J}$  /  $1.021\mbox{J}$  /  $10.333\mbox{J}$  /  $18.361\mbox{J}$  /  $22.00\mbox{J}$  Introduction to Modeling and Simulation Spring 2012

For information about citing these materials or our Terms of use, visit <a href="http://ocw.mit.edu/terms">http://ocw.mit.edu/terms</a>.