Outline

1. N-Coupled Periodic Oscillators Review
2. Periodic Potentials
a. Conserved Quantities
b. Bloch Theorem
c. Reciprocal Lattice Vectors
3. N -Coupled Periodic Oscillators Review

$$
u(s, t)=u_{0} e^{i k s a-i \omega t}
$$

Dispersion Relationship

$$
\omega^{2}(k)=\frac{2 K}{m}(1-\cos (k a))
$$

In the long wavelength limit:

$$
\omega(k) \cong \sqrt{\frac{K}{m}} k a
$$

Elastic Modulus \& Group Velocity
In the long wavelength or continuum limit:

$$
\begin{gathered}
v_{g}=\frac{d \omega}{d k}=\sqrt{\frac{K}{m}} a \\
E=\rho v_{g}^{2} \\
\rho \cong \frac{m}{a^{3}} \\
E \cong \frac{m}{a^{3}} \frac{K}{m} a^{2} \cong \frac{K}{a}
\end{gathered}
$$

2. Periodic Potentials Preview
a. Conserved Quantities

In periodic systems, the translation operator \widehat{T}_{a} commutes with the Hamiltonian \widehat{H}. Since \widehat{H} and \widehat{T}_{a} are both time independent, this means that both energy and the eigenvalues of \widehat{T}_{a} are conserved quantities.
The eigenvalues of \widehat{T}_{a} are $e^{i k a}$, but since k, the reciprocal space wave number, is the only variable, we can alternatively consider that k is conserved.
Multiplying this value by \hbar we define the quantity $\hbar k$ as the crystal momentum. Note this is different from the regular momentum as the momentum operator $\hat{p}=-i \hbar \frac{\partial}{\partial x}$ does not commute with \widehat{H} in periodic systems. Thus the regular momentum of an electron in a periodic potential is not conserved.
b. Bloch Theorem

For periodic potentials, the wave functions of particles take on the following form.

$$
\begin{aligned}
& f_{n \vec{k}}(\vec{r}+\vec{R})=f_{n \vec{k}}(\vec{r}) \\
& u_{n, \vec{k}}(\vec{r})=e^{i \vec{k} \cdot \vec{r}} f_{n \vec{k}}(\vec{r})
\end{aligned}
$$

or

$$
u_{n, \vec{k}}(\vec{r}+\vec{R})=e^{i \vec{k} \cdot \vec{R}} u_{n, \vec{k}}(\vec{r})
$$

c. Reciprocal Lattice Vectors

$$
\vec{b}_{1}=\frac{2 \pi\left(\vec{a}_{2} \times \vec{a}_{3}\right)}{\left(\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)\right)} \quad \vec{b}_{2}=\frac{2 \pi\left(\vec{a}_{3} \times \vec{a}_{1}\right)}{\left(\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)\right)} \quad \vec{b}_{3}=\frac{2 \pi\left(\vec{a}_{1} \times \vec{a}_{2}\right)}{\left(\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)\right)}
$$

e.g. Rectangular Lattice

Find the reciprocal lattice vectors for the following rectangular real space lattice:

$$
\begin{gathered}
\vec{a}_{1}=a\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \vec{a}_{2}=b\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \vec{a}_{3}=c\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
\vec{a}_{2} \times \vec{a}_{3}=\operatorname{det}\left|\begin{array}{lll}
\hat{\imath} & \hat{\jmath} \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right| \\
\vec{a}_{2} \times \vec{a}_{3}=(b \cdot c-0 \cdot 0) \hat{\imath}-(0 \cdot c-0 \cdot 0) \hat{\jmath}+(0 \cdot 0-0 \cdot b) \hat{k} \\
\vec{a}_{2} \times \vec{a}_{3}=b c\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
\vec{a}_{3} \times \vec{a}_{1}=\operatorname{det}\left|\begin{array}{lll}
\hat{l} & \hat{\jmath} & \hat{k} \\
0 & 0 & c \\
a & 0 & 0
\end{array}\right| \\
\vec{a}_{3} \times \vec{a}_{1}=(0 \cdot 0-0 \cdot c) \hat{\imath}-(0 \cdot 0-a \cdot c) \hat{\jmath}+\left(0 \cdot 0-a \cdot\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right. \\
\vec{a}_{1} \times \vec{a}_{2}=\operatorname{det}\left|\begin{array}{ll}
\hat{l} & \hat{\jmath} \\
a & 0 \\
0 & 0 \\
0 & b \\
0
\end{array}\right| \\
\vec{a}_{1} \times \vec{a}_{2}=(0 \cdot 0-b \cdot 0) \hat{\imath}-(a \cdot 0-0 \cdot 0) \hat{\jmath}+(a \cdot b-0 \cdot 0) \hat{k} \\
\vec{a}_{1} \times \vec{a}_{2}=a b\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)=(a \cdot b c)+(0 \cdot 0)+(0 \cdot 0)=a b c \\
\vec{b}_{1}=\frac{2 \pi\left(\vec{a}_{2} \times \vec{a}_{3}\right)}{\left(\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)\right)}=\frac{2 \pi b c}{a b c}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\frac{2 \pi}{a}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
\vec{b}_{2}=\frac{2 \pi\left(\vec{a}_{3} \times \vec{a}_{1}\right)}{\left(\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)\right)}=\frac{2 \pi a c}{a b c}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\frac{2 \pi}{b}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
\vec{b}_{3}=\frac{2 \pi\left(\vec{a}_{1} \times \vec{a}_{2}\right)}{\left(\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)\right)}=\frac{2 \pi a b}{0} a b c\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\frac{2 \pi}{c}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

MIT OpenCourseWare
http://ocw.mit.edu

3.024 Electronic, Optical and Magnetic Properties of Materials

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

