We know that the polymer was made in the following way:

$\overline{\mathrm{M}}_{\mathrm{n}} \approx 8300 \mathrm{~g} / \mathrm{mol}$
We know that $\overline{\mathrm{M}}_{\mathrm{n}}=\overline{\mathrm{D}}_{\mathrm{pn}} \cdot \mathrm{M}_{\mathrm{o}}, \mathrm{M}_{\mathrm{o}}=\left(\mathrm{M}_{\mathrm{SU} \# 1}+\mathrm{M}_{\mathrm{SU} \# 2}\right) / 2=86 \mathrm{~g} / \mathrm{mol}$
Note M_{0} is not the repeat unit molecular weight and M_{0} is based on the molecular weight of the structural units not the original monomers.

We are asked to distinguish between 4 possibilities.

Let us first consider Case 1.
(a) $1 \% \mathrm{xs}$ diol, all $\mathrm{H}_{2} \mathrm{O}$ removed
$\overline{\mathrm{D}}_{\mathrm{pn}}=(1+\mathrm{r}) /(1+\mathrm{r}-2 \mathrm{pr}) \quad$ where $\mathrm{r}=[\mathrm{COOH}]_{\mathrm{o}} /[\mathrm{OH}]_{0}$, remember r is always less than one, and p is the extent of rxn of COOH groups and varies from $0 \rightarrow 1$.

If no $\mathrm{H}_{2} \mathrm{O}, \mathrm{p} \rightarrow 1$ and $\overline{\mathrm{D}}_{\mathrm{pn}} \max =(1+\mathrm{r}) /(1-\mathrm{r})$
Calculate r (on a 100 mol basis)
$\mathrm{r}=100 / 101 \rightarrow \mathrm{r} \approx 0.99 \quad$ (watch significant figures!)
Calculate $\overline{\mathrm{D}}_{\mathrm{pn}}=(1+\mathrm{r}) /(1-\mathrm{r})=(1+0.99) /(1-0.99)=199$

$$
\overline{\mathrm{M}}_{\mathrm{n}}=86 \times \overline{\mathrm{D}}_{\mathrm{pn}}=17,114 \mathrm{~g} / \mathrm{mol}
$$

(b) 1% xs diol, $\left[\mathrm{H}_{2} \mathrm{O}\right] /[\mathrm{OH}]=0.05$

Again $\overline{\mathrm{D}}_{\mathrm{pn}}=(1+\mathrm{r}) /(1+\mathrm{r}-2 \mathrm{pr}) \quad$ where $\mathrm{r}=[\mathrm{COOH}]_{\mathrm{o}} /[\mathrm{OH}]_{\mathrm{o}}$ But here $\mathrm{p} \neq 1 \rightarrow$ need to use equilibrium considerations to find p .
$\mathrm{k}_{\mathrm{eq}}=1.0=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right][-\mathrm{COO}-]}{[\mathrm{OH}][\mathrm{COOH}]}$ again p is the extent of rxn of COOH groups not $\underline{\mathrm{OH}}$ groups
$[-\mathrm{COO}-]=\mathrm{p}[\mathrm{COOH}]_{\text {。 }}$
$[\mathrm{COOH}]=(1-\mathrm{p})[\mathrm{COOH}]_{\text {。 }}$
$[\mathrm{OH}]=\left(1-\mathrm{p}_{\mathrm{B}}\right)[\mathrm{OH}]_{\mathrm{o}}=(1-\mathrm{pr})^{*}[\mathrm{COOH}]_{\mathrm{o}} / \mathrm{r} \quad \mathrm{p}_{\mathrm{B}} \rightarrow$ the extent of rxn of OH groups, $\mathrm{p} \neq \mathrm{p}_{\mathrm{B}}$,

$$
\mathrm{p}_{\mathrm{B}}=\mathrm{pr}
$$

Now we can go back to the k_{eq} expression.

$$
\mathrm{k}_{\mathrm{eq}}=1.0=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right][-\mathrm{COO}-]}{[\mathrm{OH}][\mathrm{COOH}]}=\frac{P[\mathrm{COOH}]_{o} x}{(1-\mathrm{P})[\mathrm{COOH}]_{o}} \quad \text { where } x=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{OH}]}
$$

Solve for $\mathrm{p}: \mathrm{p}=1 /(1+\mathrm{x})$
When $\mathrm{x}=0.05, \mathrm{p}=0.95$
Calculate $\overline{\mathrm{D}}_{\mathrm{pn}}=(1+\mathrm{r}) /(1+\mathrm{r}-2 \mathrm{pr})=19 \quad$ with $\mathrm{p}=0.95$ and $\mathrm{r}=0.99$

$$
\overline{\mathrm{M}}_{\mathrm{n}}=86 \times 19=1,640 \mathrm{~g} / \mathrm{mol}
$$

Now let us consider Case 2
(c) 2% xs diacid, all $\mathrm{H}_{2} \mathrm{O}$ removed
$\overline{\mathrm{D}}_{\mathrm{pn}}=(1+\mathrm{r}) /(1+\mathrm{r}-2 \mathrm{pr}) \quad$ again, $\mathrm{p} \rightarrow 1$ and $\overline{\mathrm{D}}_{\mathrm{pn}}=(1+\mathrm{r}) /(1-\mathrm{r})$
However, here $\mathrm{r}=[\mathrm{OH}]_{o} /[\mathrm{COOH}]_{\mathrm{o}}$, because the acid is in xs and $\mathrm{r} \leq 1.0$!
We also need to redefine p,
$\mathrm{p}=$ the extent of rxn of OH groups and p varies from $0 \rightarrow 1$
here $\mathrm{r}=100 / 102 \rightarrow \mathrm{r}=0.98$
Calculate $\overline{\mathrm{D}}_{\mathrm{pn}}=(1+\mathrm{r}) /(1-\mathrm{r})=(1+0.98) /(1-0.98)=99$

$$
\overline{\mathrm{M}}_{\mathrm{n}}=86 \times 99=8,500 \mathrm{~g} / \mathrm{mol}
$$

(d) 2% xs diacid, $\left[\mathrm{H}_{2} \mathrm{O}\right] /[\mathrm{OH}]=0.05$

Again $\overline{\mathrm{D}}_{\mathrm{pn}}=(1+\mathrm{r}) /(1+\mathrm{r}-2 \mathrm{pr}) \quad$ where $\mathrm{r}=[\mathrm{OH}]_{\mathrm{o}} /[\mathrm{COOH}]_{\mathrm{o}}$ $\mathrm{p} \neq 1 \rightarrow$ need to use equilibrium considerations to find p .
$\mathrm{k}_{\mathrm{eq}}=1.0=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right][-\mathrm{COO}-]}{[\mathrm{OH}][\mathrm{COOH}]} \quad$ remember: p is the extent of rxn of OH groups
$[-\mathrm{COO}-]=\mathrm{p}[\mathrm{OH}]_{\mathrm{o}}$
$[\mathrm{OH}]=(1-\mathrm{p})[\mathrm{OH}]_{\mathrm{o}}$
$[\mathrm{COOH}]=\left(1-\mathrm{p}_{\mathrm{B}}\right)[\mathrm{COOH}]_{\mathrm{o}}=(1-\mathrm{pr})^{*}[\mathrm{OH}]_{\mathrm{o}} / \mathrm{r} \quad \mathrm{p}_{\mathrm{B}} \rightarrow$ the extent of rxn of COOH groups
Substitute into the k_{eq} expression.
$\mathrm{k}_{\mathrm{eq}}=1.0=\frac{p[\mathrm{OH}]_{o} x}{(1-\mathrm{pr})[\mathrm{OH}]_{o} / r} \quad$ where $x=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{OH}]}$
Solve for $\mathrm{p}: \mathrm{p}=(1 / \mathrm{r}) /(1+\mathrm{x}) \rightarrow \mathrm{p}=0.97$
Solve for $\overline{\mathrm{D}}_{\mathrm{pn}}=(1+\mathrm{r}) /(1+\mathrm{r}-2 \mathrm{pr}) \approx 26$

$$
\overline{\mathrm{M}}_{\mathrm{n}}=86 \times 26=2,260 \mathrm{~g} / \mathrm{mol}
$$

The closest M_{n} is 2% diacid, all water removed.
Summary

	$\mathrm{r}=0.99, \mathrm{P}=1$	$\mathrm{r}=0.98, \mathrm{P}=1$	$\mathrm{r}=0.99, \mathrm{P}=0.95$	$\mathrm{r}=0.98, \mathrm{P}=0.97$
D_{pn}	199	99	19	26
$\mathrm{M}_{\mathrm{n}}(\mathrm{g} / \mathrm{mol})$	17,144	8,500	1,640	2,260

