3.034 Practice Set A Solutions

We know that the polymer was made in the following way:

$$HOC - (CH_2)_4^0 COH + HOCH_2CH_2OH \xrightarrow{H^+}_{-H_2O} \longrightarrow (C - (CH_2)_4^0 COCH_2CH_2O)_x$$

SU #1 SU #2

 $\overline{M}_n\approx 8300 \text{ g/mol}$

We know that $\overline{M}_n = \overline{D}_{pn} \cdot M_o$, $M_o = (M_{SU\#1} + M_{SU\#2})/2 = 86 \text{ g/mol}$

Note M_o is <u>not</u> the repeat unit molecular weight and M_o is based on the molecular weight of the structural units <u>not</u> the original monomers.

We are asked to distinguish between 4 possibilities.

Let us first consider Case 1.

(a) 1% xs diol, all H₂O removed

 $\overline{D}_{pn} = (1+r)/(1+r-2pr)$ where $r = [COOH]_o/[OH]_o$, remember r is always less than one, and p is the extent of rxn of COOH groups and varies from $0 \rightarrow 1$.

If no H₂O, p \rightarrow 1 and \overline{D}_{pn} max = (1+r)/(1-r)

Calculate r (on a 100 mol basis) r=100/101 \rightarrow r \approx 0.99 (watch significant figures!)

Calculate $\overline{D}_{pn} = (1+r)/(1-r) = (1+0.99)/(1-0.99) = 199$

 $\overline{M}_n = 86 \times \overline{D}_{pn} = 17,114 \text{ g/mol}$

(b) 1% xs diol, [H₂O]/[OH]=0.05

Again $\overline{D}_{pn} = (1+r)/(1+r-2 pr)$ where $r = [COOH]_o/[OH]_o$ But here $p \neq 1 \rightarrow$ need to use equilibrium considerations to find p. $\begin{aligned} k_{eq} = 1.0 &= \frac{\left[\frac{H_2O}{\left[-COO-\right]}\right]}{\left[OH\right]\left[COOH\right]} \text{ again } p \text{ is the extent of } rxn \text{ of COOH groups not } \underline{OH} \text{ groups} \\ \\ \text{[-COO-]} &= p[\text{COOH}]_o \\ \\ \text{[COOH]} &= (1\text{-}p)[\text{COOH}]_o \\ \\ \text{[OH]} &= (1\text{-}p_B) \text{ [OH]}_o = (1\text{-}pr)^*[\text{COOH}]_o/r \qquad p_B \rightarrow \text{ the extent of } rxn \text{ of OH groups, } p \neq p_B, \\ p_B &= pr \end{aligned}$

Now we can go back to the k_{eq} expression. $k_{eq} = 1.0 = \frac{[H_2O][-COO-]}{[OH][COOH]} = \frac{P[COOH]_o x}{(1-P)[COOH]_o} \quad \text{where } x = \frac{[H_2O]}{[OH]}$ Solve for p: p = 1/(1+x) When x = 0.05, p = 0.95

Calculate $\overline{D}_{pn} = (1+r)/(1+r-2pr) = 19$ with p=0.95 and r=0.99

 $\overline{M}_n = 86 \times 19 = 1,640 \text{ g/mol}$

Now let us consider Case 2

(c) 2% xs diacid, all H₂O removed

 $\overline{D}_{pn} = (1+r)/(1+r-2pr)$ again, $p \rightarrow 1$ and $\overline{D}_{pn} = (1+r)/(1-r)$ However, here $r = [OH]_o/[COOH]_o$, because the acid is in xs and $r \le 1.0$! We also need to redefine p,

p = the extent of rxn of OH groups and p varies from $0 \rightarrow 1$

here
$$r = 100/102 \rightarrow r = 0.98$$

Calculate $\overline{D}_{pn} = (1+r)/(1-r) = (1+0.98)/(1-0.98) = 99$

 $\overline{M}_n = 86 \times 99 = 8,500 \text{ g/mol}$

(d) 2% xs diacid, [H₂O]/[OH]=0.05

Again $\overline{D}_{pn} = (1+r)/(1+r-2 pr)$ where $r = [OH]_o/[COOH]_o$ $p \neq 1 \rightarrow$ need to use equilibrium considerations to find p.

$$k_{eq} = 1.0 = \frac{[H_2O][-COO-]}{[OH][COOH]}$$
 remember: p is the extent of rxn of OH groups

$$[-COO-] = p[OH]_o$$

$$[OH] = (1-p)[OH]_o$$

$$[COOH] = (1-p_B) [COOH]_o = (1-pr)*[OH]_o/r \qquad p_B \rightarrow \text{the extent of rxn of COOH groups}$$

Substitute into the k_{eq} expression.

 $k_{eq} = 1.0 = \frac{p[OH]_o x}{(1 - pr)[OH]_o / r}$ where $x = \frac{[H_2O]}{[OH]}$ Solve for p: $p = (1/r)/(1+x) \rightarrow p = 0.97$

Solve for $\overline{D}_{pn} = (1+r)/(1+r-2pr) \approx 26$

$$\overline{\mathrm{M}}_{\mathrm{n}} = 86 \times 26 = 2,260 \text{ g/mol}$$

The closest M_n is 2% diacid, all water removed.

Summary

	r=0.99, P=1	r=0.98, P=1	r=0.99, P=0.95	r=0.98, P=0.97
D _{pn}	199	99	19	26
$M_n(g/mol)$	17,144	8,500	1,640	2,260